Skip to main content
Log in

Optimal techniques for the immunocytochemical demonstration ofβ-thromboglobulin, platelet factor 4, and fibrinogen in the alpha granules of unstimulated platelets

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The distribution of β-thromboglobulin, platelet factor 4, and fibrinogen in unstimulated platelets was investigated by several immunocytochemical techniques. All three substances were found to be localized in the majority of platelet alpha granules either by immunoperoxidase methods on saponin-treated platelets or by colloidal gold immunoconjugates on frozen thin sections. The optimal conditions for preparing and fixing platelets for immunocytochemistry were also determined. Platelets obtained from blood dripped directly into fixative or anticoagulated blood were compared systematically with respect to shape. Temperature was found to be the most important variable. Immediately fixed platelets were generally disc-shaped, regardless of the temperature of the fixative. Reducing the temperature of blood (stored with anticoagulant) before fixation resulted in more swollen and fewer disc-shaped platelets. However, if the blood was mixed with an anticoagulant and maintained at 37° C for 1 h before fixation, the same number of disc-shaped platelets were present as in samples from blood fixed immediately. The intracellular localization of β-thromboglobulin, platelet factor 4, and fibrinogen was consistent regardless of platelet preparatory procedure, but several technical problems were encountered with respect to plasma membrane labelling when control experiments were analysed. Immediately fixed, non-permeabilized platelet plasma membranes were always labelled, no matter which control substances or immunoperoxidase markers were used. However, when platelets were washed by centrifugation, the plasma membranes were negative. Exposure to saponin markedly diminished labelling of the plasma membranes. Optimal techniques for the immunocytochemical demonstration of these alpha granule proteins in platelets are presented in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentfeld, M. E. &Bainton, D. F. (1975) Cytochemical localization of lysosomal enzymes in rat megakaryocytes and platelets.J. clin. Invest. 56, 1635–49.

    Google Scholar 

  • Bentfeld-Barker, M. E. &Bainton, D. F. (1982) Identification of primary lysosomes in human megakaryocytes and platelets.Blood 59, 472–81.

    Google Scholar 

  • Boyles, J. &Bainton, D. F. (1979) Changing patterns of plasma membrane-associated filaments during the initial phases of polymorphonuclear leukocyte adherence.J. Cell Biol. 82, 347–68.

    Google Scholar 

  • Breederveld, K., Giddings, J. C., Ten Cate, J. W. &Bloom, A. L. (1975) The localization of Factor V within normal human platelets and the demonstration of a platelet-Factor V antigen in congenital Factor V deficiency.Br. J. Haemat. 29, 405–12.

    Google Scholar 

  • Breton-Gorius, J. &Guichard, J. (1972) Ultrastructural localization of peroxidase activity in human platelets and megakaryocytes.Am. J. Path. 66, 277–86.

    Google Scholar 

  • Breton-Gorius, J., Vainchenker, W., Nurden, A., Levy-Toledano, S. &Caen, J. (1981) Defective α-granule production in megakaryocytes from gray platelet syndrome.Am. J. Path. 102, 10–19.

    Google Scholar 

  • Breton-Gorius, J., Bizet, M., Reyes, F., Dupuy, E., Mear, C., Vannier, J.-P. &Tron, P. (1982) Myelofibrosis and acute megakaryoblastic leukemia in a child: Topographic relationship between fibroblasts and megakaryocytes with an α-granule defect.Leuk. Res. 6, 97–110.

    Google Scholar 

  • Broekman, M. J., Westmoreland, N. P. &Cohen, P. (1974) An improved method for isolating alpha granules and mitochondria from human platelets.J. Cell Biol. 60, 507–19.

    Google Scholar 

  • Broekman, M. J., Handin, R. J. &Cohen, P. (1975) Distribution of fibrinogen, and platelet factors 4 and XIII in subcellular fractions of human platelets.Br. J. Haemat. 31, 51–5.

    Google Scholar 

  • Castro-Malaspina, H., Rabellino, E. M., Yen, A., Nachman, R. L. &Moore, M. A. S. (1981) Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts.Blood 57, 781–7.

    Google Scholar 

  • Chernoff, A., Levine, R. F. &Goodman, D. S. (1980) Origin of platelet-derived growth factor in megakaryoctyes in guinea pigs.J. clin. Invest. 65, 926–30.

    Google Scholar 

  • Da Prada, M., Jakabova, M., Luscher, E. F., Pletscher, A. &Richards, J. G. (1976) Subcellular localization of the heparin-neutralizing factor in blood platelets.J. Physiol. 257, 495–502.

    Google Scholar 

  • Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L. &Kaiser, E. T. (1981) Platelet factor 4 is chemotactic for neutrophils and monocytes.Proc. natn. Acad. Sci. USA 78, 4584–87.

    Google Scholar 

  • Fukami, M. H., Niewiarowski, S., Rucinski, B. &Salganicoff, L. (1979) Subcellular localization of human platelet antiheparin proteins.Thromb. Res. 14, 433–43.

    Google Scholar 

  • Gerrard, J. M., Phillips, D. R., Rao, G. H. R., Plow, E. F., Walz, D. A., Ross, R., Harker, L. A. &White, J. G. (1980) Biochemical studies of two patients with the gray platelet syndrome — Selective deficiency of platelet alpha granules.J. clin. Invest. 66, 102–9.

    Google Scholar 

  • Giddings, J. C., Brookes, L. R., Piovella, F. &Bloom, A. L. (1982) Immunohistological comparison of platelet factor 4 (PF4), fibronectin (Fn) and factor VIII related antigen (VIII R:Ag) in human platelet granules.Br. J. Haemat. 52, 79–88.

    Google Scholar 

  • Ginsberg, M. H., Painter, R. G., Forsyth, J., Birdwell, C. &Plow, E. F. (1980a) Thrombin increases expression of fibronectin antigen on the platelet surface.Proc. natn. Acad. Sci. USA 77, 1049–53.

    Google Scholar 

  • Ginsberg, M. H., Taylor, L. &Painter, R. G. (1980b) The mechanism of thrombin-induced platelet Factor 4 secretion.Blood 55, 661–8.

    Google Scholar 

  • Gogstad, G. O., Hagen, I., Korsmo, R. &Solum, N. O. (1981) Characterization of the proteins of isolated human platelet α-granules — Evidence for a separate α-granule pool of the glycoproteins IIb and IIIa.Biochim. biophys. Acta 670, 150–62.

    Google Scholar 

  • Gourdin, M. F., Farcet, J. P. &Reyes, F. (1982) The ultrastructural localization of immunoglobulins in human B cells of immunoproliferative diseases.Blood 59, 1132–40.

    Google Scholar 

  • Griffiths, F., Brands, R., Burke, B., Louvard, D. &Warren, G. (1982) Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport.J. Cell Biol. 95, 781–92.

    Google Scholar 

  • Handin, R. I. &Cohen, H. J. (1976) Purification and binding properties of human platelet Factor four.J. biol. Chem. 251, 4273–82.

    Google Scholar 

  • Hiti-Harper, J., Wohl, H. &Harper, E. (1978) Platelet Factor 4: An inhibitor of collagenase.Science 199, 991–2.

    Google Scholar 

  • Holmsen, H. &Weiss, H. J. (1979) Secretable storage pools in platelets.A. Rev. Med. 30, 119–34.

    Google Scholar 

  • Hope, W., Martin, T. J., Chesterman, C. N. &Morgan, F. J. (1979) Human β-thromboglobulin inhibits PGI2 production and binds to a specific site in bovine aortic endothelial cells.Nature 282, 210–2.

    Google Scholar 

  • Jaffe, B. A., Leung, L. L. K., Nachman, R. L., Levin, R. I. &Mosher, D. F. (1982) Thrombospondin is the endogenous lectin of human platelets.Nature 295, 246–8.

    Google Scholar 

  • Kaplan, D. R., Chao, F. C., Stiles, C. D., Antoniades, H. N. &Scher, C. D. (1979) Platelet α-granules contain a growth factor for fibroblasts.Blood 53, 1043–52.

    Google Scholar 

  • Kaplan, K. L., Broekman, M. J., Chernoff, A., Lesznik, G. R. &Drillings, M. (1979) Platelet α-granule proteins: Studies on release and subcellular localization.Blood 53, 604–18.

    Google Scholar 

  • Kaplan, K. L. (1981) Platelet granule proteins: localization and secretion. InPlatelets in Biology and Pathology, Vol. 5 (edited byGordon, A. S.), pp. 77–90. Amsterdam: Elsevier/North-Holland Biomedical Press.

    Google Scholar 

  • Levine, S. P. &Wohl, H. (1976) Human platelet Factor 4: Purification and characterization by affinity chromotography.J. biol. Chem. 251, 324–8.

    Google Scholar 

  • Levine, S. P. &Krentz, L. S. (1977). Development of radioimmunoassay for human platelet Factor 4.Throm. Res. 11, 673–86.

    Google Scholar 

  • Louvard, D., Reggio, H. &Warren, G. (1982). Antibodies to the Golgi complex and the rough endoplasmic reticulum.J. Cell Biol. 92, 92–107.

    Google Scholar 

  • Marcus, A. J., Zucker-Franklin, D., Safier, L. B. &Ullman, H. L. (1966) Studies on human platelet granules and membranes.J. clin. Invest. 45, 14–28.

    Google Scholar 

  • Marguerie, G. A., Plow, E. F. &Edgington, T. S. (1979) Human platelets possess an inducible and saturable receptor specific for fibrinogen.J. biol. Chem. 254, 5357–63.

    Google Scholar 

  • Mclaren, K. M., Holloway, L. &Pepper, D. S. (1980) Human platelet Factor 4 and tissue mast cells.Thromb. Res. 19, 293–7.

    Google Scholar 

  • Mclaren, K. M. &Pepper, D. S. (1982) Immunological localization of β-thromboglobulin and platelet factor 4 in human megakaryocytes and platelets.J. clin. Path. 35, 1227–31.

    Google Scholar 

  • Moore, S. &Pepper, D. S. (1976) Identification and characterization of a platelet specific release product: β-thromboglobulin. InPlatelets in Biology and Pathology, Vol. 1 (edited byGordon, J. L.), pp. 293–311. New York: North-Holland Publishing Co.

    Google Scholar 

  • Nurden, A. T., Kunicki, T. J., Dupuis, D., Soria, C. &Caen, J. P. (1982) Specific protein and glycoprotein deficiencies in platelets isolated from two patients with the gray platelet syndrome.Blood 59, 709–18.

    Google Scholar 

  • Pham, T. D., Kaplan, K. L. &Butler, V. P. (1983) Immunoelectron microscopic localization of platelet Factor 4 and fibrinogen in the granules of human platelets.J. Histochem. Cytochem.,31, 905–10.

    Google Scholar 

  • Flow, E. F. &Ginsberg, M. H. (1981) Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets.J. biol. Chem. 256, 9477–82.

    Google Scholar 

  • Ross, R. &Vogel, A. (1978) The platelet derived growth factor.Cell 14, 203–10.

    Google Scholar 

  • Ryo, R., Proffitt, R. T. &Deuel, T. F. (1980a) Human platelet Factor 4: Subcellular localization and characteristics of release from intact platelets.Thromb. Res. 17, 629–44.

    Google Scholar 

  • Ryo, R., Proffitt, R. T., Poger, M. E., O'bear, R. &Deuel, T. F. (1980b) Platelet Factor 4 antigen in megakaryocytes.Thromb. Res. 17, 645–52.

    Google Scholar 

  • Ryo, R., Nakeff, A., Huang, S. S., Ginsberg, M. &Deuel, T. F. (1983) New synthesis of a platelet-specific protein: platelet Factor 4 synthesis in a megakaryocyte-enriched rabbit bone marrow culture system.J. Cell Biol. 96, 515–20.

    Google Scholar 

  • Senior, R. M., Griffin, G. L., Huang, J. S., Walz, D. A. &Deuel, T. F. (1983) Chemotactic activity of platelet alpha granule proteins for fibroblasts.J. Cell Biol. 96, 382–5.

    Google Scholar 

  • Slot, J. W., Bouma, B. N., Montgomery, R. &Zimmerman, T. S. (1978) Platelet Factor VIII-related antigen: Immunofluorescent localization.Thromb. Res. 13, 871–81.

    Google Scholar 

  • Tokuyasu, K. T. (1978) A study of positive staining of ultrathin frozen sections.J. Ultrastruct. Res. 63, 287–307.

    Google Scholar 

  • Tokuyasu, K. T. (1980) Immunocytochemistry on ultrathin frozen sections.Histochem. J. 12, 381–403.

    Google Scholar 

  • Tougard, C., Picart, R. &Tixier-Vidal, A. (1980) Electron microscopic cytochemical studies on the secretory process in rat prolactin cells in primary culture.Am. J. Anat. 158, 471–90.

    Google Scholar 

  • Weiss, H. J., Witte, L. D., Kaplan, K. L., Lages, B. A., Chernoff, A., Nossel, H. L., Goodman, D. S. &Baumgartner, H. R. (1979) Heterogeneity in storage pool deficiency: Studies on granule-bound substances in 18 patients including variants deficient in α-granules, platelet factor 4, β-thromboglobulin, and platelet-derived growth factor.Blood 54, 1296–319.

    Google Scholar 

  • White, J. G. (1983) Ultrastructural physiology of platelets with randomly dispersed rather than circumferential band microtubules.Am. J. Path. 110, 55–63.

    Google Scholar 

  • Zucker, M. B., Broekman, M. J. &Kaplan, K. L. (1979a) Factor VIII-related antigen in human blood platelets—Localization and release by thrombin and collagen.I. Lab. clin. Med. 94, 675–82.

    Google Scholar 

  • Zucker, M. B., Mosesson, M. W., Broekman, M. J. &Kaplan, K. L. (1979b) Release of platelet fibronectin (cold-insoluble globulin) from alpha granules induced by thrombin or collagen: Lack of requirement for plasma fibronectin in ADP-induced platelet aggregation.Blood 54, 8–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based in part on theHistochemical Journal Lecture for 1983 given by Dr Bainton at a ‘Symposium on Haematological Cytochemistry’ in Cambridge on 29 September 1983 at the invitation of the Royal Microscopical Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenberg, P.E., Shuman, M.A., Levine, S.P. et al. Optimal techniques for the immunocytochemical demonstration ofβ-thromboglobulin, platelet factor 4, and fibrinogen in the alpha granules of unstimulated platelets. Histochem J 16, 983–1001 (1984). https://doi.org/10.1007/BF01003853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01003853

Keywords

Navigation