The Histochemical Journal

, Volume 7, Issue 6, pp 585–597 | Cite as

A tetrazolium technique for the histochemical demonstration of multiple forms of rat brain monoamine oxidase

  • D. Williams
  • J. E. Gascoigne
  • E. D. Williams


A tetrazolium technique has been developed for the demonstration of rat brain monoamine oxidase (MAO). This method, which allows the use of a variety of phenyl and indolealkylamine substrates, depends on exposing unfixed cryostat sections to high concentrations of aqueous buffered sodium sulphate solution prior to incubation in amine-Nitro Blue tetrazolium medium. Sites of MAO activity are visualized by formazan deposition. The specificity and mechanism of formazan production has been studied. Reduction of the tetrazolium salt by aldehyde formed by oxidative deamination of the monoamine substrate is the most likely basis of the reaction. It is suggested that exposure to sulphate may modify the inhibitory effect of the tetrazolium salt on MAO, resulting in improved demonstration of enzyme activity. The ability to use 5-hydroxytryptamine and tyramine as substrates in this method, in conjunction with the use of the specific inhibitor clorgyline, permits the histological demonstration of multiple forms of the enzyme (A- and B-MAO). This technique may, therefore, be of value in the study of the physiological role of MAO and monoamines in rat brain.


Monoamine Tetrazolium Sodium Sulphate Formazan Tyramine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H. (1962). Mitochondrial structure as a controlling factor of monoamine oxidase activity and the action of amine-oxidase inhibitors.Biochem. Pharmacol. 9, 135–40.Google Scholar
  2. Altman, F. P. (1974). Studies on the reduction of tetrazolium salts.Histochemistry 38, 155–71.Google Scholar
  3. Bjorklund, A., Baumgarten, H. G. &Nobin, A. (1974). Chemical lesioning of central monoamine axons by means of 5,6-dihydroxytryptamine and 5,7-dihydroxytryptamine.Adv. Biochem. Psychopharmacol. 10, 13–33.Google Scholar
  4. Blaschko, H. (1963). In:The Enzymes, Vol. 8 (eds. P. D. Boyer, H. A. Lardy & K. Myrback), pp. 337–51. New York: Academic Press.Google Scholar
  5. Buffoni, F. (1966). Histaminase and related amine oxidases.Pharmacol. Rev. 18, 1163–99.Google Scholar
  6. Erwin, V. G. &Deitrich, R. A. (1971). The labellingin vivo of monoamine oxidase by14C-pargyline: a tool for studying the synthesis of the enzyme.Molecular Pharmacol. 7, 219–28.Google Scholar
  7. Fuller, R. W. &Roush, B. W. (1972). Substrate-selective and tissue-selective inhibition of monoamine oxidase.Arch. Int. Pharmacodyn. 198, 270–6.Google Scholar
  8. Gascoigne, J. E., Williams, D. &Williamse, D. (1975). Histochemical demonstration of an additional form of rat brain MAO.Br. J. Pharmacol. 54, 274.Google Scholar
  9. Glenner, G. G., Burtner, H. J. &Brown, G. W. (1957). The histochemical demonstration of monoamine oxidase activity by tetrazolium salts.J. Histochem. Cytochem. 5, 591–600.Google Scholar
  10. Glenner, G. G., Weissbach, H. &Redfield, B. G. (1960). The histochemical demonstration of enzymatic activity by a non enzymatic redox reaction. Reduction of tetrazolium salts by indolyl-3-acetaldehyde.J. Histochem. Cytochem. 8, 258–61.Google Scholar
  11. Graham, R. C. &Karnovsky, M. J. (1965). The histochemical demonstration of monoamine oxidase activity by coupled peroxidatic oxidation.J. Histochem. Cytochem. 13, 604–5.Google Scholar
  12. Guha, S. R. &Ghosh, S. K. (1970). Inhibition of monoamine oxidation in brain by monoamine oxidase inhibitors.Biochem. Pharmacol. 19, 2929–32.Google Scholar
  13. Hall, D. W. R., Logan, B. W. &Parsons, G. H. (1969). Further studies on the inhibition of monoamine oxidase by M&B 9302 (clorgyline). I. Substrate specificity in various mammalian species.Biochem. Pharmacol. 18, 1447–54.Google Scholar
  14. Hanker, J. S., Kusyk, C. J., Bloom, F. E. &Pearse, A. G. E. (1973). The demonstration of dehydrogenases and monoamine oxidase by the formation of osmium blacks at the sites of Hatchett's brown.Histochemie 33, 205–30.Google Scholar
  15. Hollunger, G. &Oreland, L. (1970). Preparation of soluble monoamine oxidase from pig liver mitochondria.Arch. Biochem. Biophys. 139, 320–8.Google Scholar
  16. Houslay, M. D. &Tipton, K. F. (1973). The nature of the electrophoretically separable multiple forms of rat liver monoamine oxidase.Biochem. J. 135, 173–86.Google Scholar
  17. Houslay, M. D. &Tipton, K. F. (1974). A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes.Biochem. J. 139, 645–52.Google Scholar
  18. Johnston, J. P. (1968). Some observations upon a new inhibitor of monoamine oxidase in brain tissue.Biochem. Pharmacol. 17, 1285–97.Google Scholar
  19. Kapeller-Adler, R. (1970).Amine Oxidases and Methods for their Study, pp. 26–9. New York: Wiley-Interscience.Google Scholar
  20. Koelle, G. B. &Valk, A. T. (1954). Physiological implications of the histochemical localization of monoamine oxidase.J. Physiol. 126, 434–47.Google Scholar
  21. Lagnado, J. R., Okamoto, M. &Youdim, M. B. H. (1971). The effects of tetrazolium salts on monoamine oxidase activity.FEBS Letters 17, 177–80.Google Scholar
  22. Lalliemant, C. &Baron, C. (1967). Inhibition par les sels de tetrazolium de l'activité monoamine-oxydasique d'une suspension mitochondriale de cerveau de mouton.Experientia 23, 262–4.Google Scholar
  23. Lester, R. L. &Fleischer, S. (1961). Studies on the electron transport system. 27. The respiratory activity of acetone-extracted beef heart mitochondria: role of coenzyme Q and other lipids.Biochim. Biophys. Acta 47, 358–77.Google Scholar
  24. Neff, N. H. &Goridis, C. (1972). Neoronal monoamine oxidase: specific enzyme types and their rates of formation.Adv. Biochem. Psychopharmacol. 5, 307–23.Google Scholar
  25. Ofeland, L. &Ekstedt, B. (1972). Soluble and membrane-bound pig liver mitochondrial monoamine oxidase: thermostability, tryptic digestability and kinetic properties.Biochem. Pharmacol. 21, 2479–88.Google Scholar
  26. Oreland, L. &Olivecrona, T. (1971). The role of acidic phospholipids in the binding of monoamine oxidase to the mitochondrial structure.Arch, Biochem. Biophys. 142, 710–14.Google Scholar
  27. Pearse, A. G. E. (1968).Histochemistry: Theoretical and Applied, 3rd Ed., Vol. I, pp. 479–80. London: Churchill.Google Scholar
  28. Pearse, A. G. E. (1972).Histochemistry: Theoretical and Applied, 3rd Ed., Vol. II, p. 869. London: Churchill Livingstone.Google Scholar
  29. Pearse, A. G. E. &Hess, R. (1961). Substantivity and other factors responsible for formazan patterns in dehydrogenase histochemistry.Experientia 17, 136–41.Google Scholar
  30. Schnaitman, C., Erwin, V. G. &Greenawalt, J. W. (1967). Submitochondrial localization of monoamine oxidase.J. Cell Biol. 34, 719–35.Google Scholar
  31. Schnaitman, C. &Greenawalt, J. W. (1968). Enzymatic properties of the inner and outer membranes of rat liver mitochondria.J. Cell Biol. 38, 158–75.Google Scholar
  32. Shannon, W. A. Jr., Wasserkrug, H. L. &Seligman, A. M. (1974). The ultrastructural localization of monoamine oxidase (MAO) with tryptamine and a new tetrazolium salt, 2-(2′-benzothiazolyl)-5-styryl-3-(4′-phthalhydrazidyl) tetrazolium chloride (BSPT).J. Histochem. Cytochem. 22, 170–82.Google Scholar
  33. Squires, R. F. (1972). Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species.Adv. Biochem. Psychopharmacol. 5, 355–70.Google Scholar
  34. Thoenen, H. &Tranzer, J. P. (1968). Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine.Naunyn-Schmiedebergs Arch. expt. Path. Pharmak. 261, 271–88.Google Scholar
  35. Tipton, K. F., Houslay, M. D. &Garrett, N. J. (1973). Allotopic properties of human brain monoamine oxidase.Nature New Biol. 246, 213–14.Google Scholar
  36. Weissbach, H., Redfield, B. G., Glenner, G. G. &Mitoma, C. (1957). Tetrazolium reduction as a measure of monoamine oxidase activity in vitro.J. Histochem. Cytochem. 5, 601–5.Google Scholar
  37. Williams, D., Gascoigne, J. E. & Williams, E. D. (1975). A specific form of rat brain monoamine oxidase in circumventricular structures.Brain Res., in press.Google Scholar
  38. Wohlrab, F. &Fuchs, U. (1967). Nichtenzymatische TNBT-färbung von gewebsstrukturen.Histochemie 9, 256–68.Google Scholar
  39. Yang, H. Y. T. &Neff, N. H. (1973). β-Phenylethylamine: a specific substrate for type B monoamine oxidase of brain.J. Pharmac. exp. Ther. 187, 365–71.Google Scholar
  40. Yasunobu, K. T. &Oi, S. (1972). Mechanistic aspects of the bovine hepatic monoamine oxidase reaction.Adv. Biochem. Psychopharmacol. 5, 91–105.Google Scholar
  41. Youdim, M. B. H., Collins, G. G. S. &Sandler, M. (1969). Multiple forms of rat brain monoamine oxidase.Nature 223, 626–8.Google Scholar
  42. Zeller, E. A. (1963). Diamine oxidases. In:The Enzymes, Vol. 8 (eds. P. D. Boyer, H. Lardy & K. Myrback), pp. 313–35. New York: Academic Press.Google Scholar

Copyright information

© Chapman and Hall Ltd 1975

Authors and Affiliations

  • D. Williams
    • 1
  • J. E. Gascoigne
    • 1
  • E. D. Williams
    • 1
  1. 1.Department of Pathology, Welsh National School of MedicineUniversity Hospital of Wales, The HeathCardiffUK

Personalised recommendations