Skip to main content
Log in

Histochemical properties of spermatozoa and somatic cells. I. Relations between the Feulgen hydrolysis pattern and the composition of the nucleoproteins

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Synopsis

In the study presented a comparison was made between the DNA hydrolysis patterns ini.o m and 0.3m HCl of several types of cells differing widely in the biochemical composition of their chromatin. It was found that three main types of hydrolysis pattern could be distinguished, represented by salmon spermatozoa, ascites tumour cells and bull spermatozoa.

  1. (1)

    The salmon spermatozoa type is characterized by rapid depurination and rapid depolymerization.

  2. (2)

    The ascites tumour cell type is characterized by slow depurination and a moderate rate of depolymerization.

  3. (3)

    The bull spermatozoa type is characterized by slow depurination and slow depolymerization.

Examples of mixed hydrolysis patterns are given and discussed. It is suggested that the natural occurrence of disulphide bridges, the introduction of formalin as a fixative, or a reduction in the acid concentration, stabilizes the chromatin towards hydrolysis. This is due to stabilization of the protein matrix that normally hinders extraction of the DNA fragments produced during hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, I. &Bergqvist, H. Å. (1962). Cytochemical evidence for varied DNA complexes in the nuclei of undifferentiated cells.J. Cell Biol. 15, 604–6.

    Google Scholar 

  • Agrell, I. &Bergqvist, H. Å. (1967). Cytochemical studies on DNA complexes during cell multiplication and cell differentiation.Comp. Biochem. Physiol. 22, 189–98.

    Google Scholar 

  • Akrinrimisi, E., Tsó, P. &Bonner, J. (1965). Binding of basic protein to DNA.J. molec. Biol. 11, 128–36.

    Google Scholar 

  • Acvares, M. R. (1970) Microfluorometric comparison of Feulgen-Deoxyribonucleic acid hydrolysis in meristemic and differentiated cells of the orchid embryo.Expl. Cell Res. 61, 191–8.

    Google Scholar 

  • Andersson, G. K. A. &Agrell, L. P. S. (1972). Cytoplasmic and nuclear growth during the proliferation of Ehrlich ascites tumour cells in mice.Virchows Arch. Abt. B Zellpath. 11, 1–10.

    Google Scholar 

  • Andersson, G. K. A. &Kjellstrand, P. T. T. (1971). Exposure and removal of stainable groups during Feulgen acid hydrolysis of fixed chromatine at different temperatures.Histochemie 27, 165–72.

    Google Scholar 

  • Andersson, G. K. A. &Kjellstrand, P. T. T. (1972). Influence of acid concentration and temperature on fixed chromatine during Feulgen hydrolysis.Histochemie 30, 108–14.

    Google Scholar 

  • Andersson, G. K. A. &Kjellstrand, P. T. T. (1974). A cytophotometric study of the DNA distribution in Ehrlich ascites tumour populations at different stages of development.Virchows Arch. Abt. B Zellpath. 16, 311–18.

    Google Scholar 

  • Andersson, G. K. A. &Kjellstrand, P. T. T. (1975). A study of DNA depolymerisation during Feulgen acid hydrolysis.Histochemie 43, 123–30.

    Google Scholar 

  • Bachmann, K. (1968). A cytochemical kinetic investigation of the Feulgen hydrolysis of fixed chromatine.Histochemie 16, 287–93.

    Google Scholar 

  • Bauer, H. (1932). Die Feulgensche Nuklealfärbung in ihrer Anwendung auf cytologische Untersuchungen.Z. Zellforsch. 15, 225–47.

    Google Scholar 

  • Bloch, D. P. &Hew, H. Y. C. (1960). Changes in nuclear histones during fertilisation, and early embryonic development in the pulmonate snail, Helix aspersa.J. biophys. biochem. Cytol. 8, 69–81.

    Google Scholar 

  • Forenfreund, E., Fitt, E. &Bendich, A. (1961). Isolation and properties of deoxyribonucleic acid from mammalian sperm.Nature 191, 1375–7.

    Google Scholar 

  • Borum, K. (1965). Labelling of mouse thymocytes in vivo with tritiated thymidine for cell transfer experiments.Nature 208, 253–5.

    Google Scholar 

  • Borum, K. (1968). Pattern of cell production and cell migration in mouse thymus studied by autoradiography.Scand. J. Haemat. 5, 339–52.

    Google Scholar 

  • Brachet, J., Hulin, N. &Guermant, J. (1968). Acid lability of deoxyribonucleic acids and cell differentiation.Expl. Cell Res. 51, 509–18.

    Google Scholar 

  • Bril-Petersen, E. &Westenbrink, H. G. K. (1963). A structural basic protein as a counter-part of DNA in mammalian spermatozoa.Biochim. biophys. Acta 76, 152–4.

    Google Scholar 

  • Böhm, N. (1968). Einfluss der fixierung und der Säurekonzentration auf die Feulgen-Hydrolyse bei 28°C.Histochemie 14, 201–11.

    Google Scholar 

  • Böhm, N. &Sandritter, W. (1966). Feulgen hydrolysis of normal cells and mouse ascites tumour cells.J. Cell Biol. 28, 1–7.

    Google Scholar 

  • Böhm, N. &Seibert, H-U. (1966). Zur bestimmung der parameter der Batemanfunktion bei der auswertung won Feulgen-hydrolysekurven.Histochemie 6, 260–6.

    Google Scholar 

  • Calvin, H. I. &Bedford, J. M. (1971). Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis.J. Reprod. Fert. suppl. 13, 65–75.

    Google Scholar 

  • Caspersson, T. (1932). Die quantitative bestimmung von thymonucleinsäure mittels fuchsinschwefliger säure.Biochem. Z. 253, 97–110.

    Google Scholar 

  • Caspersson, T. O. (1950). In:Cell Growth and Function, pp. 14–77. New York: Norton.

    Google Scholar 

  • Coelingh, J. P., Rozijn, T. H. &Monfoort, C. H. (1969). Isolation and partial characterisation of a basic protein from bovine sperm heads.Biochim. Biophys. Acta 188, 353–6.

    Google Scholar 

  • Colquhoun, C. (1971).Lectures on Biostatistics. An introduction to statistics with applications in Biology and Medicine. Oxford: Clarendon Press.

    Google Scholar 

  • Cowden, R. R. &Curtis, S. K. (1973). Fluorescence cytochemical studies of chromosomes: Quantitative applications of fluorescein mercuric acetate. In:Fluorescence Techniques in cell Biology (eds. A. A. Thaer & M. Sernetz), pp. 135–49. Berlin: Springer Verlag.

    Google Scholar 

  • De-Cosse, J. J. &Aiello, N. (1966). Feulgen hydrolysis: Effect of acid and temperature.J. Histochem. Cytochem. 11, 601–4.

    Google Scholar 

  • Deitch, A. D., Wagner, D. &Richart, R. M. (1967). The effect of hydrolysis conditions and fixation on the intensity of the Feulgen reaction.J. Histochem. Cytochem. 14, 779.

    Google Scholar 

  • Deitch, A. D., Wagner, D. &Richart, R. M. (1968). Conditions influencing the intensity of the Feulgen reaction.J. Histochem. Cytochem. 16, 371–9.

    Google Scholar 

  • Delange, R. J. &Smith, E. L. (1971). Histones structure and function.Ann. Rev. Biochem. 40, 279–314.

    Google Scholar 

  • Distefano, H. S. (1948). A cytochemical study of the Feulgen nuclear reaction.Chromosoma 3, 282–301.

    Google Scholar 

  • Elgin, S. C. R., Froehner, S. C., Smart, J. E. &Bonner, J. (1971). The biology and chemistry of chromosomal proteins.Adv. Cell Mol. Biol. 1, 1–57.

    Google Scholar 

  • Ernström, U. &Larsson, B. (1969). Thymic export of lymphocytes three days after labelling with tritiated thymidine.Nature 222, 279–80.

    Google Scholar 

  • Fand, S. B., Genco, K. K. &Holland, R. H. (1967). Qualitative and quantitative utility of room temperature 5n HCl Feulgen hydrolysis.J. Histochem. Cytochem. 14, 778.

    Google Scholar 

  • Fand, S. B. (1970). Environmental conditions for optimal Feulgen hydrolysis. In:Introduction to Quantitative Cytochemistry—II. (eds. G. L. Wied & G. F. Bahr), pp. 209–21. New York, London: Academic Press.

    Google Scholar 

  • Garcia, A. M. (1969a). Studies on DNA in leukocytes and related cells of mammals. VI. The Feulgen-DNA content of rabbit leukocytes after hypotonic treatment.J. Histochem. Cytochem. 17, 47–55.

    Google Scholar 

  • Garcia, A. M. (1969b). Cytophotometric studies on haploid and diploid cells with different degrees of chromatin coiling.Ann. N.Y. Acad. Sci. 57, 237–49.

    Google Scholar 

  • Garcia, A. M. (1970). Stoichiometry of dye binding versus degree of chromatin coiling. In:Introduction to Quantitative Cytochemistry—II (eds. G. L. Wied & G. F. Bahr), pp. 153–70. New York, London: Academic Press.

    Google Scholar 

  • Greenwood, M. S. &Berlyn, G. P. (1968). Feulgen cytophotometry of pine nuclei: effects of fixation. Role of formalin.Stain technol. 43, 111–17.

    Google Scholar 

  • Henricks, D. M. &Mayer, D. T. (1965a). Characterization of the basic protein associated with DNA in mammalian spermatozoa.Proc. Soc. exp. Biol. Med. 119, 769–72.

    Google Scholar 

  • Henricks, D. M. &Mayer, D. T. (1965b). Isolation and characterisation of a basic keratin-like protein from mammalian spermatozoa.Expl. Cell Res. 40, 402–12.

    Google Scholar 

  • Hilgartner, C. A. (1968). The binding of DNA to residual protein in mammalian nuclei.Expl. Cell Res. 49, 520–32.

    Google Scholar 

  • Huang, R. C. &Kleiman, L. (1971). Specificities in the structure and function of interphase chromosomes.Symp. Soc. exp. Biol. 25, 93–115.

    Google Scholar 

  • Huberman, J. A. (1973). Structure of chromosome fibers and chromosomes.Ann. Rev. Biochem. 42, 355–78.

    Google Scholar 

  • Kasten, F. H. (1964). The Feulgen reaction—an enigma in cytochemistry.Acta Histochem. 17, 88–99.

    Google Scholar 

  • Kjellstrand, P. T. T. &Andersson, G. K. A. (1975). Histochemical properties of spermatozoa and somatic cells. II. Differences in the Feulgen hydrolysis pattern induced through alterations of the nucleoprotein complex.Histochem. J. 7, 575–83.

    Google Scholar 

  • Krug, H. &Wenk, H. (1973). Veränderungen der Feulgen-hydrolyse-kurve während des postnatalen Wachstums im hippocampus der Ratte.Acta Histochem. 45, 305–21.

    Google Scholar 

  • Lederer, B., Jobst, K. &Sandritter, W. (1966). Die Feulgenreaktion bei der langzeithydrolyse: Der einfluss von histonprotein.Acta histochem. 24, 379–81.

    Google Scholar 

  • Leuchtenberger, C. (1958). Quantitative determinations of DNA in cells by Feulgen microspectrophotometry.Gen. cytochem. Methods,1, 219–78.

    Google Scholar 

  • Mackay, M., Hilgartner, C. A. &Dounce, A. L. (1968). Further studies of DNA-nucleo-protein gels and residual protein of isolated cell nuclei.Expl. Cell Res. 49, 533–57.

    Google Scholar 

  • Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms.J. molec. Biol. 3, 208–18.

    Google Scholar 

  • Mayall, B. H. &Mendelsohn, M. L. (1970). Errors in absorption cytophotometry: Some theoretical and practical considerations. In:Introduction to Quantitative Cytochemistry — II. (eds. G. L. Wied & G. F. Bahr), pp. 171–97. New York, London: Academic Press.

    Google Scholar 

  • Murgatroyd, L. B. (1967). A quantitative investigation into the effect of fixation, temperature and acid strength upon the Feulgen reaction.J. R. microsc. Soc. 88, 133–9.

    Google Scholar 

  • Phillips, D. M. P. (1971).Histones and Nucleohistones, pp. 305. London, New York: Plenum.

    Google Scholar 

  • Rasch, R. W. &Rasch, E. M. (1973). Kinetics of hydrolysis during the Feulgen reaction for Deoxyribonucleic acid. A reevaluation.J. Histochem. Cytochem. 21, 1053–65.

    Google Scholar 

  • Roels, H. (1965). Etude de L'intensité de la réaction de Feulgen dans le noyan de la cellule Thyroidienne chez le rat blanc.Expl. Cell Res. 40, 499–512.

    Google Scholar 

  • Ruch, F. (1970). Principles and some applications of cytofluorometry. In:Introduction to Quantitative Cytochemistry—II (eds. G. L. Wied & G. F. Bahr), pp. 431–50. New York, London: Academic Press.

    Google Scholar 

  • Sandritter, W. &Böhm, N. (1964) Atypische hdrolysekurve bei der Feulgen-reaction von mäuseascitestumour zellen.Naturwissenschaften 11, 273.

    Google Scholar 

  • Sandritter, W., Jobst, K., Rakow, L. &Bosselmann, K. (1965). Zur Kinetik der Feulgenreaktion bei verlängerter Hydrolysezeit cytophotometrische Messungen im Sichtbaren und ultravioletten licht.Histochemie 4, 420–37.

    Google Scholar 

  • Sandritter, W., Müller, D. &Gensecke, O. (1960). Ultraviolett microspektrophotometrische messungen des nukleinsäuregehaltes von spermien und diploiden Zellen.Acta Histochem. 10, 139–54.

    Google Scholar 

  • Simpson, R. T. (1973). Structure and function of chromatin.Adv. Enzymol. 38, 41–108.

    Google Scholar 

  • Tannock, I. F. (1969). A comparison of cell proliferation parameters in solid and ascites Ehrlich tumours.Cancer Res. 29, 1527–34.

    Google Scholar 

  • Vendrely, R. &Vendrely, C. (1966). Biochemistry of Histones and protamines.Protoplasmatologia 5:3c, 1–88.

    Google Scholar 

  • Walker, P. M. B. &Richards, B. M. (1959). Quantitative microscopical techniques for single cells. In:The Cell. Biochemistry, Physiology, Morphology, Vol. 1 (eds. J. Brachet & A. E. Mirsky), pp. 91–138. New York, London: Academic Press.

    Google Scholar 

  • Wilkins, M. H. F. (1956). Physical studies of the molecular structure of deoxyribose nucleic acid and nucleoprotein.Cold Spring Harbor Symp. Quant. Biol. 21 75–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjellstrand, P.T.T., Andersson, G.K.A. Histochemical properties of spermatozoa and somatic cells. I. Relations between the Feulgen hydrolysis pattern and the composition of the nucleoproteins. Histochem J 7, 563–573 (1975). https://doi.org/10.1007/BF01003794

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01003794

Keywords

Navigation