Molecular Engineering

, Volume 3, Issue 4, pp 377–414 | Cite as

Computer assisted simulations and molecular graphics methods in molecular design. 1. Theory and applications to enzyme active-site directed drug design

  • O. Tapia
  • M. Paulino
  • F. M. L. G. Stamato
Article

Abstract

A survey is presented of model building techniques, computer-assisted molecular dynamics simulations and a new theory of enzyme catalysis. Some aspects of the theoretical formalism are given. Enzyme active-site directed drug design is illustrated with examples taken from molecular modeling studies using FAD-containing disulphide oxidoreductases, proteinases and carbonic anhydrases.

Key words

Drug design enzyme catalysis molecular graphics molecular modeling computer simulation methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Honig:Curr. Opin. Struct. Biol. 3, 223 (1993).Google Scholar
  2. 2.
    J. R. Helliwell:Macromolecular crystallography with synchrotron radiation: Cambridge University Press: Cambridge, UK (1992).Google Scholar
  3. 3.
    C.-I. Brändén:Structure 2, 5 (1994).Google Scholar
  4. 4.
    T. L. James:Curr. Opin. Str. Biol. 4, 275 (1994).Google Scholar
  5. 5.
    J. Boyd, N. Soffe and I. Campbell:Structure 2, 253 (1994).Google Scholar
  6. 6.
    J. L. Smith and P. Wright:Curr. Opin. Struct. Biol. 3, 723 (1993).Google Scholar
  7. 7.
    J. Bertran, Ed.:Molecular aspects of biotechnology: computational models and theories; Kluwer Academic Publishers: Dordrecht (1992).Google Scholar
  8. 8.
    A. T. Brünger and M. Karplus:Accounts of Chemical Research 24, 54 (1991).Google Scholar
  9. 9.
    A. E. Torda, R. M. Scheek and W. F. van Gunsteren:J. Mol. Biol. 214, 223 (1990).Google Scholar
  10. 10.
    W. F. van Gunsteren:Prot. Eng. 2, 5 (1988).Google Scholar
  11. 11.
    W. F. DeGrado and B. W. Matthews:Curr. Opin. Struct. Biol. 3, 547 (1993).Google Scholar
  12. 12.
    R. Stone:Science 256, 441 (1992).Google Scholar
  13. 13.
    P. A. Kollman:Curr. Opin. Struct. Biol. 4, 240 (1994).Google Scholar
  14. 14.
    A. R. Fersht and K. A. Dill:Curr. Opin. Struct. Biol. 4, 67 (1994).Google Scholar
  15. 15.
    H. P. Schnebli and N. J. Braun:Proteinase Inhibitors as Drugs, B. A. Salvesen, Ed., Proteinase Inhibitors; Elsevier Science Publishers: Amsterdam; p. 613 (1986).Google Scholar
  16. 16.
    G. Hocman:Int. J. Biochem. 24, 1365 (1992).Google Scholar
  17. 17.
    O. Tapia:Primary and Secondary Sources of Enzyme Catalysis.Activated Processes and the Transition Structures in Vacuo, J. P. Frénoy, Ed., Les Cahiers IMABIO CNRS; CNRS: Paris, Vol. 7; p. 1 (1993).Google Scholar
  18. 18.
    O. Tapia, O. Jacob and F. Colonna:Theor. Chim. Acta 85, 217 (1993).Google Scholar
  19. 19.
    O. Tapia, J. Andrés and V. S. Safont:J. Phys. Chem. 98, 4821 (1994).Google Scholar
  20. 20.
    O. Tapia and J. Andrés:J. Mol. Struct. (THEOCHEM) in press (1994).Google Scholar
  21. 21.
    O. Tapia, J. Andrés and V. S. Safont:Trans. Faraday Soc. in press (1994).Google Scholar
  22. 22.
    S. E. Ealick and S. R. Armstrong:Curr. Opin. Struct. Biol. 3, 861 (1993).Google Scholar
  23. 23.
    A. Warshel and H. Levitt:J. Mol. Biol. 103, 227 (1976).Google Scholar
  24. 24.
    A. Warshel, F. Sussman and J. K. Hwaang:J. Mol. Biol. 201, 139 (1988).Google Scholar
  25. 25.
    A. Warshel:Curr. Opin. Str. Biol. 2, 230 (1992).Google Scholar
  26. 26.
    L. Pauling:Nature 161, 707 (1948).Google Scholar
  27. 27.
    W. P. Jencks:Catalysis in chemistry and enzymology; Dover Pub.: New York, p. 836 (1987).Google Scholar
  28. 28.
    T. E. Creighton:Protein structures and molecular properties; 2nd ed.: Freeman & Co.: New York (1993).Google Scholar
  29. 29.
    S. Glasstone, K. J. Laidler and H. Eyring:The theory of rate processes; First ed.; McGraw-Hill: New York, p. 153 (1941).Google Scholar
  30. 30.
    E. R. Stadtman:Covalent Modification Reactions are Marking Steps in Protein Turnover, H. Neurath, Ed., Perspectives in biochemistry; American Chemical Society: Washington, DC, Vol. 2; p. 252 (1991).Google Scholar
  31. 31.
    O. Tapia, R. Cardenas, J. Andres and F. Colonna-Cesari:J. Am. Chem. Soc. 110, 4046 (1988).Google Scholar
  32. 32.
    O. Tapia and J. Andrés:Mol. Eng. 2, 37 (1992).Google Scholar
  33. 33.
    O. Tapia, J. Andrés and R. Cardenas:Chem. Phys. Lett. 189, 395 (1992).Google Scholar
  34. 34.
    J. B. Bolton, N. Mataga and G. McLendon, Ed.:Electron transfer in inorganic, organic, and biological systems; American Chemical Society: 1991; Vol. 228, p. 295.Google Scholar
  35. 35.
    P. G. Mezey:Optimization and Analysis of Energy Hypersurfaces, I. G. Csizmadia and R. Daudel, Ed.,Computational theoretical organic chemistry; p. 101 (1981).Google Scholar
  36. 36.
    P. G. Mezey:Theoret. Chim. Acta (Berl.)62, 133 (1982).Google Scholar
  37. 37.
    J. Andrés, V. S. Safont and O. Tapia:Chem. Phys. Letters 198, 515 (1992).Google Scholar
  38. 38.
    J. Andrés, V. S. Safont, J. Queralt and O. Tapia:J. Phys. Chem. 97, 7888 (1993).Google Scholar
  39. 39.
    D. Danishefsky:Science 259, 469 (1993).Google Scholar
  40. 40.
    R. L. Lerner and A. Tramontano:TIBS 12, 427 (1987).Google Scholar
  41. 41.
    J. M. Rini, U. Schulze-Gahmen and I. A. Wilson:Science 255, 959 (1992).Google Scholar
  42. 42.
    R. M. Baum:Chem. & Eng. News 33 (1993).Google Scholar
  43. 43.
    M. R. Haynes, E. A. Stura, D. Hilvert and I. A. Wilson:Science 263, 646 (1994).Google Scholar
  44. 44.
    V. E. Gouverneur, K. N. Houk, B. Pascual-Teresa, B. Beno, K. D. Janda and R. A. Lerner:Science 262, 204 (1993).Google Scholar
  45. 45.
    M. Ehrenberg and O. Tapia:Biophys. Chem. 43, 157 (1992).Google Scholar
  46. 46.
    O. Tapia:J. Math. Chem. 10, 139 (1992).Google Scholar
  47. 47.
    L. Brady and G. Dodson:Nature 368, 692 (1994).Google Scholar
  48. 48.
    B. A. Jameson, J. M. McDonnel, J. C. Marini and R. Korngold:Nature 368, 744 (1994).Google Scholar
  49. 49.
    R. Kuroki, L. H. Weaver and B. W. Matthews:Science 262, 2030 (1993).Google Scholar
  50. 50.
    J. R. Knowles:Science 236, 1252 (1987).Google Scholar
  51. 51.
    J. Haidu,Intriguing problems in enzymatic catalysis. Dynamic X-ray crystallographic studies on free-radical enzymes, 22nd FEBS Meeting, Stockholm (1993).Google Scholar
  52. 52.
    V. Fülöp, R. P. Phizackerley, S. M. Soltis, I. J. Clifton, S. Wakatsuki, J. Erman, J. Hajdu and S. L. Edwards:Structure 2, 201 (1994).Google Scholar
  53. 53.
    J. Kraut:Science 242, 533 (1988).Google Scholar
  54. 54.
    O. Tapia and O. Nilsson:Molecular Dynamics Computer Modelling and Protein Engineering, J. Bertran, Ed., Molecular aspects of biotechnology: Computational models and theories; Kluwer Academic Publishers, Dordrecht: The Netherlands (1992).Google Scholar
  55. 55.
    C.-I. Branden and H. Eklund:Mol. Int. Act. Pro. 60, 63 (1978).Google Scholar
  56. 56.
    O. Tapia and G. Johannin:J. Chem. Phys. 75, 3624 (1981).Google Scholar
  57. 57.
    O. Tapia, H. Eklund and C.-I. Brändén:Molecular, Electronic, and Structural Aspects of the Catalytic Mechanism of Alcohol Dehydrogenases, G. Náray-Szabó and K. Simon, Ed., Steric aspects of biomolecular interactions; CRC: Boca Raton, FL; p. 159 (1987).Google Scholar
  58. 58.
    O. Tapia, J. Andrés, J. M. Aullo and R. Cardenas:THEOCHEM (1988).Google Scholar
  59. 59.
    J. Andrés, V. Moliner and V. S. Safont:Chem. Soc. Faraday Trans. 90 (1994).Google Scholar
  60. 60.
    S. S. Shaik, H. B. Schlegel and S. Wolfe:Theoretical Aspects of Physical Organic Chemistry; Wiley: New York, NY, p. 285 (1992).Google Scholar
  61. 61.
    M. L. Sinot, X. Guo, S.-C. Li and Y.-T. Li:J. Am. Chem. Soc. 115, 3334 (1993).Google Scholar
  62. 62.
    C. Hansch and T. E. Klein:Acc. Chem. Res. 19, 392 (1986).Google Scholar
  63. 63.
    H. P. Rang and M. M. Dale:Pharmacology; Second ed.; Churchill Livingstone: Edinburgh, (1991).Google Scholar
  64. 64.
    N. P. Franks and W. R. Lieb:Nature 367, 607 (1994).Google Scholar
  65. 65.
    H. Nikaido:Science 264, 382 (1994).Google Scholar
  66. 66.
    R. Wolfenden and W. M. Kati:Acc. Chem. Res. 24, 209 (1991).Google Scholar
  67. 67.
    W. B. Pratt:The Entry, Distribution, and Elimination of Drugs, W. B. Pratt and P. Taylor, Ed., Principles of drug action. The basis of pharmacology; Churchill Livingstone: New York, NY; p. 201 (1990).Google Scholar
  68. 68.
    O. Tapia, R. Cardenas, Y. G. Smeyers, A. Hernández-Laguna, J. J. Randez and F. J. Randez:Int. J. Quantum Chem. 38, 727 (1990).Google Scholar
  69. 69.
    O. Tapia:Theoretical Evaluation of Solvent Effects, Z. B. Maksic, Ed., Theoretical Models of Chemical Bonding; Springer-Verlag: Berlin, Vol. 4; p. 435 (1991).Google Scholar
  70. 70.
    M. Karplus and D. L. Weaver:Nature 260, 404 (1976).Google Scholar
  71. 71.
    M. Karplus and G. A. Petsko:Nature 347, 631 (1990).Google Scholar
  72. 72.
    J. A. McCammon and S. C. Harvey:Dynamics of proteins and nucleic acids; Cambridge University Press: Cambridge, UK (1987).Google Scholar
  73. 73.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak:J. Chem. Phys. 81, 3684 (1984).Google Scholar
  74. 74.
    B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus:J. Comput. Chem. 4, 187 (1983).Google Scholar
  75. 75.
    W. F. van Gunsteren and H. J. C. Berendsen:Groningen Molecular Simulation (GROMOS) Library Manual; BIOMOS B.V.: Nijenborgh 16, Groningen, The Netherlands (1987).Google Scholar
  76. 76.
    J. Åqvist, W. F. van Gunsteren, M. Leijonmarck and O. Tapia:J. Mol. Biol. 83, 461 (1985).Google Scholar
  77. 77.
    E. Silla, F. Villar, O. Nilsson, J. L. Pascual-Ahuir and O. Tapia:J. Mol. Graph. 8, 168 (1990).Google Scholar
  78. 78.
    E. Bonomi:J. Stat. Phys. 39, 167 (1985).Google Scholar
  79. 79.
    W. G. Hoover:Computational Statistical Mechanics; First ed.; Elsevier: Amsterdam, p. 313, (1991).Google Scholar
  80. 80.
    P. A. Kollman and J. M. Merz:Acc. Chem. Res. 23, 246 (1990).Google Scholar
  81. 81.
    W. F. van Gunsteren and H. J. C. Berendsen:Angewandte Chemie 29, 992 (1990).Google Scholar
  82. 82.
    J. Li, E. Platt, B. Waszkowycz, R. Cotterill and B. Robson:Biophys. Chem. 43, 221 (1992).Google Scholar
  83. 83.
    J. A. McCammon:Curr. Opin. Struct. Biol. 1, 196 (1991).Google Scholar
  84. 84.
    C. J. Cramer and D. G. Truhlar:J. Am. Chem. Soc. 113, 8305 (1991).Google Scholar
  85. 85.
    J. Åqvist, C. Medina and J.-E. Samuelsson:Submitted to Protein Eng. (1993).Google Scholar
  86. 86.
    A. Ben-Naim:Curr. Opin. Struct. Biol 4, 264 (1994).Google Scholar
  87. 87.
    G. Náray-Szabó, P. R. Surján and J. G. Angyán:Applied quantum chemistry; Reidel: Dordrecht, p. 489 (1987).Google Scholar
  88. 88.
    M. Levy and J. P. Perdew:J. Chem. Phys. 84, 4519 (1986).Google Scholar
  89. 89.
    A. J. Olson and D. S. Goodsell:Curr. Opin. Str. Biol. 2, 193 (1992).Google Scholar
  90. 90.
    O. Nilsson:J. Mol. Graph. 8, 192 (1990).Google Scholar
  91. 91.
    C. C. Cambillau and E. Horjales:J. Mol. Graph. 5, 174 (1987).Google Scholar
  92. 92.
    G. A. Arteca, O. Tapia and P. G. Mezey:J. Mol. Graph. 9, 148 (1991).Google Scholar
  93. 93.
    V. F. R. Jones:Sci. Am. 52 (1990).Google Scholar
  94. 94.
    J. Åqvist and O. Tapia:J. Mol. Graph. 5, 30 (1987).Google Scholar
  95. 95.
    J. Åqvist and O. Tapia:J. Mol. Graph. 10, 120 (1992).Google Scholar
  96. 96.
    M. Carson and C. E. Bugg:J. Mol. Graph. 4, 121 (1986).Google Scholar
  97. 97.
    M. Carson:J. Mol. Graph. 5, 103 (1987).Google Scholar
  98. 98.
    C. Walsh, M. Bradley and K. Nadeau:TIBS 16, 305 (1991).Google Scholar
  99. 99.
    A. H. Fairlamb, P. Blackburn, P. Ulrich, B. T. Chait and A. Cerami:Science 227, 1485 (1985).Google Scholar
  100. 100.
    E. Pai:Curr. Opin. Struct. Biol. 1, 796 (1991).Google Scholar
  101. 101.
    M. C. Jockers-Scherübl, R. H. Schirmer and L. Kraut-Siegel:Eur. J. Biochem. 180, 267 (1989).Google Scholar
  102. 102.
    E. Horjales, B. Oliva, F. M. L. G. Stamato, M. Paulino-Blumenfeld, O. Nilsson and O. Tapia:Mol. Eng. 1, 357 (1992).Google Scholar
  103. 103.
    R. Sustman, W. Sicking and G. E. Schulz:Angew. Chem. Int. Ed. Engl. 28, 1023 (1989).Google Scholar
  104. 104.
    E. Pai and G. E. Schulz:J. Biol. Chem. 258, 1752 (1983).Google Scholar
  105. 105.
    E. Pai, P. A. Karplus and G. E. Schulz:Biochemistry 27, 4465 (1988).Google Scholar
  106. 106.
    G. Henderson, A. H. Fairlamb, P. Ulrich and A. Cerami:Biochemistry 26, 3023 (1987).Google Scholar
  107. 107.
    M. Paulino-Blumenfeld, N. Hikichi, M. Hansz and O. Ventura:J. Mol. Struct. 210, 467 (1990).Google Scholar
  108. 108.
    J. Kuriyan, X.-P. Kong, T. S. R. Krisna, R. M. Sweet, N. J. Murgolo, H. Field, A. Cerami and G. B. Henderson:Proc. Natl. Acad. Sci. USA 88, 8764 (1991).Google Scholar
  109. 109.
    M. Bradley, B. U. S. and C. T. Walsh:Biochemistry 30, 6124 (1991).Google Scholar
  110. 110.
    S. Bailey, K. Smith, A. H. Fairlamb and W. N. Hunter:Eur. J. Biochem. 213, 67 (1993).Google Scholar
  111. 111.
    W. N. Hunter, S. Bailey, J. Habash, S. J. Harrop, J. R. Helliwell, T. Aboagye-Kwarteng, K. Smith and A. H. Fairlamb:J. Mol. Biol. 227, 322 (1992).Google Scholar
  112. 112.
    S. Ikeda, J. A. Ashley, P. Wirsching and K. Janda:J. Am. Chem. Soc. 114, 7604 (1992).Google Scholar
  113. 113.
    P. Y. S. Lam, P. K. Jadhav, C. J. Eyermann, C. N. Hodge, Y. Ru, L. T. Bacheler, J. L. Meek, M. J. Otto, M. M. Rayner, Y. N. Wong, C.-H. Chang, P. C. Weber, D. A. Jackson, T. R. Sharpe and S. Erickson-Viitanen:Science 263, 380 (1994).Google Scholar
  114. 114.
    M. Kotler, R. A. Katz, W. Danho, J. Leis and A. M. Skalka:Proc. Natl. Acad. Sci. USA 85, 4185 (1988).Google Scholar
  115. 115.
    M. A. Navia, P. M. D. Fitzgerald, B. M. McKeever, C.-T. Leu, J. C. Heimbach, W. K. Herber, I. S. Sigal, P. L. Darke and J. P. Springer:Nature 337, 615 (1989).Google Scholar
  116. 116.
    J. V. Bowie, J. F. Reidhaar-Olson, W. A. Lim and R. T. Sauer:Science 247, 1306 (1990).Google Scholar
  117. 117.
    G. M. Hass, H. Ako, D. T. Grahn and H. Neurath:Biochemistry 15, 93 (1976).Google Scholar
  118. 118.
    B. Oliva, O. Nilsson, M. Wästlund, R. Cardenas, E. Querol, F. X. Aviles and O. Tapia:Biochem. Biophys. Res. Comm. 176, 627 (1991).Google Scholar
  119. 119.
    B. Oliva, M. Wastlund, O. Nilsson, R. Cardenas, E. Querol, F. X. Avilés and O. Tapia:Biochem. Biophys. Res. Comm. 176, 616 (1991).Google Scholar
  120. 120.
    E. Horjales, J. Åqvist, M. Leijonmarck and O. Tapia:Biochem. Biophys. Res. Comm. 148, 954 (1987).Google Scholar
  121. 121.
    E. Querol, M. A. Molina, X. Daura, B. Oliva, C. Marino, F. Canals, C. Crane-Robinson and O. Tapia:Protease Inhibitors from Vegetables as a Target for Protein Engineering: Application to the Potato Carboxypeptidase Inhibitor, F. X. Aviles, Ed., Innovations on the proteases and their inhibitors; Walter de Gruyter: Berlin; p. 477 (1993).Google Scholar
  122. 122.
    M. A. Phillips and R. J. Fletterick:Curr. Opin. Struct. Biol. 2, 713 (1992).Google Scholar
  123. 123.
    J. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker and I. Silman:Science 253, 872 (1991).Google Scholar
  124. 124.
    L. Brady, A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J. P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim and U. Menge:Nature 343, 767 (1990).Google Scholar
  125. 125.
    N. C. J. Strynadka, H. Adachi, S. E. Jensen, K. Johns, A. Sielicki, C. Betzel, K. Sutoh and M. N. G. James:Nature 359, 700 (1992).Google Scholar
  126. 126.
    N. C. J. Strydnadka, S. E. Jensen, K. Johns, H. Blanchard, M. Page, A. Matagne, J.-M. Frère and M. N. G. James:Nature 368, 657 (1994).Google Scholar
  127. 127.
    S. Scheiner, D. A. Kleier and W. N. Lipscomb:Proc. Natl. Acad. Sci. USA 72, 2606 (1975).Google Scholar
  128. 128.
    F. M. L. G. Stamato, E. Longo, L. M. Yoshioka and R. C. Ferreira:J. Theor. Biol. 107, 329 (1984).Google Scholar
  129. 129.
    G. Náray-Szabó and L. Polgar:Int. J. Quant. Chem. Quant. Biol. Symp. 7, 397 (1980).Google Scholar
  130. 130.
    E. Longo, F. M. L. G. Stamato, R. Ferreira and O. Tapia:J. Theor. Biol. 112, 783 (1985).Google Scholar
  131. 131.
    F. M. L. G. Stamato, E. Longo, R. C. Ferreira and O. Tapia:J. Theor. Biol. 118, 45 (1986).Google Scholar
  132. 132.
    F. M. L. G. Stamato and O. Tapia:Int. J. Quant. Chem. 33, 187 (1988).Google Scholar
  133. 133.
    S. Schroder, V. Dagget and P. Kollman:J. Am. Chem. Soc. 113, 8922 (1991).Google Scholar
  134. 134.
    V. Daggett, S. Schroder and P. Kollman:J. Am. Chem. Soc. 113, 8926 (1991).Google Scholar
  135. 135.
    S. Scheiner and W. N. Lipscomb:Proc. Natl. Acad. Sci. USA 73, 432 (1976).Google Scholar
  136. 136.
    D. R. Corey and C. S. Craik:J. Am. Chem. Soc. 114, 1784 (1992).Google Scholar
  137. 137.
    S. Braxton and J. A. Wells:J. Biol. Chem. 266, 11797 (1991).Google Scholar
  138. 138.
    P. Carter, I. Abrahmsen and J. A. Wells:Biochemistry 30, 6142 (1991).Google Scholar
  139. 139.
    J. A. Wells:Biochemistry 29, 8509 (1990).Google Scholar
  140. 140.
    S. N. Rao, U. C. Singh, P. A. Bash and P. A. Kollman:Nature 328, 551 (1987).Google Scholar
  141. 141.
    N. Mizushima, D. Spellmeyer, S. Hirono, D. Pearlman and P. A. Kollman:J. Biol. Chem. 266, 11801 (1991).Google Scholar
  142. 142.
    J. W. Caldwell, D. A. Agard and P. A. Kollman:Proteins 10, 140 (1991).Google Scholar
  143. 143.
    F. Avbelj, J. Moult, D. H. Kitson, M. N. G. James and A. T. Hagler:Biochemistry 29, 8658 (1990).Google Scholar
  144. 144.
    T. M. Blundell, J. Cooper, S. I. Foundling, D. M. Jones, B. Atrash and M. Szelke:On the Rational Design of Renin Inhibitors: X-ray Studies of Aspartic Proteinases Complexed with Transition State Analogues, H. Neurath, Ed., Perspectives in biochemistry; Am. Chem. Soc.: Washington DC, Vol. 1; p. 84 (1989).Google Scholar
  145. 145.
    K. M. Merz, R. Hoffmann and M. J. M. Dewar:J. Am. Chem. Soc. 111, 5636 (1989).Google Scholar
  146. 146.
    O. Jacob, R. Cardenas and O. Tapia:J. Am. Chem. Soc. 112, 8692 (1990).Google Scholar
  147. 147.
    O. Jacob and O. Tapia:Int. J. Quantum Chem. 42, 1271 (1992).Google Scholar
  148. 148.
    D. W. Landry, K. Zhao, G. X.-Q. Yang, M. Glickman and T. M. Georgiadis:Science 259, 1899 (1993).Google Scholar
  149. 149.
    J. H. Arevalo, M. J. Taussig and I. A. Wilson:Nature 365, 859 (1993).Google Scholar
  150. 150.
    A. Warshel, G. Náray-Szabó, F. Sussman and J.-K. Hwang:How Do Serine Proteases Really Work?, H. Neurath, Ed., Perspectives in biochemistry; American Chemical Society: Washington, DC, Vol. 2; p. 115 (1991).Google Scholar
  151. 151.
    M. P. Deonarain, A. Berry, N. S. Scrutton and R. N. Perham:Biochemistry 28, 9602 (1989).Google Scholar
  152. 152.
    M. D. Yoder, N. T. Keen and F. Jurnak:Science 260, 1503 (1993).Google Scholar
  153. 153.
    E. Benedetti:Molecular Engineering in the Preparation of Bioactive Peptides, S. Doniach, Ed., Statistical mechanics, protein structure and protein-substrate interaction; Plenum Press: New York, NY (1994).Google Scholar
  154. 154.
    N. S. Scrutton, M. P. Deonarain, A. Berry and R. Perham:Science 258, 1140 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • O. Tapia
    • 1
  • M. Paulino
    • 1
  • F. M. L. G. Stamato
    • 1
  1. 1.Department of Physical ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations