Molecular Engineering

, Volume 3, Issue 4, pp 301–309 | Cite as

Electronic structure of siloxene model compounds

  • Yoichi Yamaguchi


The electronic structures of one-dimensional and two-dimensional siloxene (Si6O3H6) model compounds have been examined theoretically, using the semiempirical tight-binding self-consistent field crystal orbital (SCF-CO) method. These compounds are formed by silicon-based chain and planar structures containing a regular array of oxygen atoms. Results show that the two-dimensional polysilane in which OH groups are substituted for H atoms possesses a relatively smaller direct gap than other siloxenes. It is assumed that the electronic structures of siloxenes are affected not only by the dimensionality of Si-Si σ-conjugational networks due to an array of oxygen atoms, but also by the diminishing of the electron population in the Si-Si bonding orbitals caused by oxygen atoms with large electronegativity.

Key words

Silicon-containing polymers electronic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. T. Canham:Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
  2. 2.
    V. Lehmann and U. Gosele:Appl. Phys. Lett. 58, 856 (1991).Google Scholar
  3. 3.
    M. A. Tischler, R. T. Collins, J. H. Stathis and J. C. Tsang:Appl. Phys. Lett. 60, 639 (1992).Google Scholar
  4. 4.
    A. G. Cullis and L. T. Canham:Nature 353, 335 (1991).Google Scholar
  5. 5.
    D. J. Wolford, J. A. Reimer and B. A. Scott:Appl. Phys. Lett. 42, 369 (1983).Google Scholar
  6. 6.
    S. Furukawa and N. Matsumoto:Phys. Rev. B 31, 2114 (1985).Google Scholar
  7. 7.
    J. R. Heath and J. M. Jasinski:Mat. Res. Soc. Symp. Proc. 256, 117 (1992).Google Scholar
  8. 8.
    M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber and M. Cardona:Solid State Commun. 81, 307 (1992).Google Scholar
  9. 9.
    M. A. Tischler and R. T. Collins:Solid State Commun. 84, 819 (1992).Google Scholar
  10. 10.
    T. K. Sham, D. T. Jiang, I. Coulthard, J. W. Lorimer, X. H. Feng, K. H. Tan, S. P. Frigo, R. A. Rosenberg, D. C. Houghton and B. Bryskiewicz:Nature 363, 331 (1993).Google Scholar
  11. 11.
    A. Weiss, G. Beil and H. Meyer:Z. Naturforsch. 34b, 25 (1979) and references therein.Google Scholar
  12. 12.
    Y. Yamaguchi and J. Shioya:Synth. Met. 59, 29 (1993).Google Scholar
  13. 13.
    Y. Yamaguchi:Synth. Met. 62, 23 (1994).Google Scholar
  14. 14.
    H. Ubara, T. Imura, A. Hiraki, I. Hirabayashi and K. Morigaki:J. Non-Cryst. Solids 59–60, 641 (1983).Google Scholar
  15. 15.
    I. Hirabayashi and K. Morigaki:J. Non-Cryst. Solids 59–60, 645 (1983).Google Scholar
  16. 16.
    K. Takeda, H. Teramae and N. Matsumoto:J. Am. Chem. Soc. 108, 8186 (1986); F. C. Schilling, F. A. Bovey, D. D. Davis, A. J. Lovinger and R. B. Macgregor, Jr.:Macromolecules 22, 4645 (1989).Google Scholar
  17. 17.
    See, for instance, C. Kittel,Introduction to Solid State Physics, 5th ed., Wiley, New York, 1976, Ch. 8.Google Scholar
  18. 18.
    P. Deák, M. Rosenbauer, M. Stutzmann, J. Weber and M. S. Brandt:Phys. Rev. Lett. 69, 2531 (1992).Google Scholar
  19. 19.
    K. Takeda and K. Shiraishi:Solid State Commun. 85, 301 (1993).Google Scholar
  20. 20.
    C. G. Van de Walle and J. E. Northrup:Phys. Rev. Lett. 70, 1116 (1993).Google Scholar
  21. 21.
    J. J. P. Stewart,Quantum Chemistry Program Exchange, Program No. 455, Indiana University, Bloomington, Indiana, USA.Google Scholar
  22. 22.
    M. Kertesz:Adv. Quantum Chem. 15, 161 (1982).Google Scholar
  23. 23.
    See, for instance, K. Tanaka, M. Toriumi, S. Wang and T. Yamabe:Polym. J. 22, 1001 (1990).Google Scholar
  24. 24.
    M. Stutzmann, J. Weber, M. S. Brandt, H. D. Fuchs, M. Rosenbauer, P. Deák, A. Höpner and A. Breitschwerdt:Adv. Solid State Phys. 32, 179 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Yoichi Yamaguchi
    • 1
  1. 1.Osaka R&D LaboratoriesSumitomo Electric IndustriesOsakaJapan

Personalised recommendations