Molecular Engineering

, Volume 3, Issue 4, pp 293–299 | Cite as

Molecular assemblies of diazafluorenone Schiff-base amphiphiles. II. The vesicle and its molecular aggregation behavior

  • Zihou Tai
  • Xiangping Qian
  • Juan Zou
  • Shoujun Xiao
  • Fusheng Zhang


The self-assembling properties of a series of single-chain (C12–C18) amphiphilic ligands, diazafluorenone Schiff bases (DAFSB), were studied in dilute aqueous solutions by various physical methods. Transmission electron microscopy (TEM) shows that these amphiphiles can form vesicles with diameters of 50–250 nm and layer widths of about 5 nm. UV-vis spectra reflect the formation of J-like aggregates in bilayer assemblies. The gel to liquid-crystal phase-transition behavior of the bilayer in vesicles was investigated by differential scanning calorimetry (DSC), and the phase transition temperature,Tm, ranged between 60 and 75 °C. The experimental results indicate that DAFSB is a new type of bilayer-forming agent and provides a good model system for studying the interactions between metal ions and amphiphiles.

Key words

Diazafluorenone Schiff-base amphiphile bilayer-forming agent vesicle molecular aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kunitake and Y. Okahata:J. Am. Chem. Soc. 99, 3860 (1977).Google Scholar
  2. 2.
    T. Kunitake:Angew. Chem. Int. Ed. Engl. 31, 709 (1992).Google Scholar
  3. 3.
    T. Kunitake and Y. Okahata:Bull. Chem. Soc. Jpn. 51, 1877 (1978).Google Scholar
  4. 4.
    Y. Okahata, S. Tanamachi, M. Nagai and T. Kunitake:Polym. Prepr. Jpn. 27, 231 (1978).Google Scholar
  5. 5.
    M. Shimomura, R. Ando and T. Kunitake:Ber. Bunsenges. Phys. Chem. 87, 1143 (1983).Google Scholar
  6. 6.
    Z. Tai, G. Zhang, X. Qian, S. Xiao, Z. Lu and Y. Wei:Langmuir 9, 1601 (1993).Google Scholar
  7. 7.
    Z. Tai, X. Qian, J. Zou and G. Zhang:Molecular Engineering 3, 285–291 (1994).Google Scholar
  8. 8.
    J. H. Fuhrhop and J. Mathieu:Angew. Chem. Int. Ed. Engl. 23, 100 (1984).Google Scholar
  9. 9.
    H. Kuhn and D. Mobius:Angew. Chem. Int. Ed. Engl. 10, 620 (1971).Google Scholar
  10. 10.
    J. H. Fendler:Chem. Rev. 87, 377 (1987).Google Scholar
  11. 11.
    T. Nagamura, S. Mihara, Y. Okahata, T. Kunatakeet al.:Ber. Bunsenges. Phys. Chem. 82, 1093 (1978).Google Scholar
  12. 12.
    K. Kano, A. Romero, B. Ojermouni, H. Ache and J. H. Fendler:J. Am. Chem. Soc. 101, 4030 (1979).Google Scholar
  13. 13.
    K. Deguchi and J. Mino:J. Colloid and Interface Sci. 65, 155 (1978).Google Scholar
  14. 14.
    E. G. McRae and M. Kasha: inPhysical Processes in Radiation Biology, Academic Press, New York, 1964.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Zihou Tai
    • 1
  • Xiangping Qian
    • 1
  • Juan Zou
    • 1
  • Shoujun Xiao
    • 2
  • Fusheng Zhang
    • 3
  1. 1.State Key Laboratory of Coordination ChemistryNanjing UniversityNanjingP.R. China
  2. 2.Chien-Shiung Wu Laboratory (Molecular and Biomolecular Electronics Laboratory)Southeast UniversityNanjingP. R. China
  3. 3.Center of Material AnalysisNanjing UniversityNanjingP. R. China

Personalised recommendations