An idea of half-space thermal mirror

  • Zbigniew Płochocki
  • Andrzej Mioduchowski
  • Jacek F. MacZyński
Original Papers


The paper describes a theoretical discussion of the optical reflecting properties of an isotropic thermoelastic half-space subjected to an instantaneous heat pulse at a point of its surface (such a system is called the half-space thermal mirror). The fundamental optical properties of the mirror so obtained (i.e.—its aberration characteristic, including optical power and focal length), and their time evolution are derived in the paper. The half-space thermal mirror represents an optical device suffering rather high aberrations; the paraxial optics approximation, and criteria of its applicability for such a mirror are given. Possibilities of an application of the thermal mirror for determining the temperature conductivity of a material are considered.


Optical Property Time Evolution Mathematical Method Focal Length Optical Power 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. A. Boley and J. H. Weiner,Theory of Thermal Stresses, J. Wiley, New York-London 1960.Google Scholar
  2. [2]
    M. Born and E. Wolf,Principles of Optics, Pergamon Press, Oxford-London 1968.Google Scholar
  3. [3a]
    E. T. Brook-Levinson, I. V. Khodan and Z. Płochocki,Non-stationary Optical Methods for Determination of Transport Coefficients of Liquids and Solids, ZAMM,67, 5, T264 (1987).Google Scholar
  4. [3b]
    E. T. Brook-Levinson, V. F. Vinokurov and Z. Płochocki,Interferometry Determination of Thermal Diffusivity, Int. Conf.:Interferometry '89: 100 years after Michelson: State of Art and Applications, Z. Jaroszewicz and M. Pluta (eds.), Proc. SPIE vol. 1121, 547–554 (1990).Google Scholar
  5. [4]
    P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York 1971; see also: E. Janke, F. Emde, F. Lösch,Tafeln Höherer Funktionen, 6, Aufl, B.G. Teubner, Stuttgart 1960.Google Scholar
  6. [5]
    L. D. Landau and E. M. Lifshitz, (Theory of Elasticity—in Russian), 4th ed., Nauka, Moscow 1987.Google Scholar
  7. [6]
    A. V. Luikov,Analytical Heat Diffusion Theory, Academic Press, New York-London 1968; see also: H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford 1989.Google Scholar
  8. [7]
    A. Mioduchowski and Z. Płochocki,On main approximations in the theory of linear thermoelasticity, to be submitted to J. Thermal Stresses.Google Scholar
  9. [8]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, vol. 2, Academic Press, New York-San Francisco-London 1975.Google Scholar
  10. [9]
    M. Sparks,Optical distortion by heated windows in high-power laser system, J. Appl. Phys.,42, 12, 5029 (1971).Google Scholar
  11. [10]
    E. T. Whitteker and G. N. Watson,A Course of Modern Analysis, Part II, 4th ed., Cambridge University Press 1963.Google Scholar
  12. [11]
    Wolfram Research Inc.,Mathematica. Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Zbigniew Płochocki
    • 1
  • Andrzej Mioduchowski
    • 1
    • 2
  • Jacek F. MacZyński
    • 1
  1. 1.Institute of Fundamental Technological Research of the Polish Academy of SciencesWarsawPoland
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations