The Histochemical Journal

, Volume 10, Issue 2, pp 213–222 | Cite as

Methods of denaturation and renaturation of DNA in interphasic chromatin: cytochemical quantitative analysis by Methyl Green staining

  • C. Pellicciari
  • A. Fraschini


Almost diploid nuclei (as judged from the microdensitometric evaluation of the Feulgen positive material) of granular and Purkinje cells of the rat cerebellar cortex, were submitted toin situ DNA denaturation and renaturation experiments.

We assessed the double-strandedness of DNA, by Methyl Green staining according to Scott (1967). Under these conditions a stoichiometric ratio between bound dye and DNA exists, suitable for quantitative micrdensitometric measurments. Our data show that the DNA in the interphasic chromatin is never completely denatured after the treatments we used. Furthermore, the renaturation takes place in a different way in the two cell types.

Owing to the unlike chromatin packing of granular and Purkinje nuclei, we suggest that nuclear proteins must interfere differently on thein situ denaturation and renaturation processes.


Methyl Quantitative Analysis Purkinje Cell Nuclear Protein Cerebellar Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernocchi, G. (1975). Contenuto in DNA e area nucleare dei neuroni durante l'istogenesi cerebellare del ratto.Rend. Ist Lomb. Sci. Lett. 109, 143–61.Google Scholar
  2. Bernocchi, G. &De Stefano, G. F. (1976b). Analisi della cinetico de eobrolisidella reasione di Feulgen in cellule a diverso rapporto di eu-erd eterocrometino.Riv. Istoch. Norm. Pat. 20, 120.Google Scholar
  3. Bernocchi, G., De Vivo, M. L. &De Stefano, G. F. (1976). Sull'esistenza di due aspetti morfofunzionali di versi delle cellule di Purkinje nel cervelletto di ratto adulto.Riv. Istoch. Norm. Pat. 20, 119.Google Scholar
  4. Bradbury, E. M. (1975). Histones in chromosomal structure and control of cell division. In:The structure and function of chromatin.Ciba Foundation Symposium.28, pp. 131–55. Amsterdam: Associated Scientific Publishers.Google Scholar
  5. Britten, R. J., Graham, D. E. &Neufeld, B. R. (1974). Analysis of repeating DNA sequences by reassociation. In:Methods in enzymology, Vol. XXIX, Part E. pp. 363–418. New York and London: Academic Press.Google Scholar
  6. Britten, R. J. &Kohne, D. E. (1968). Repeated sequences in DNA.Science 11, 529–40.Google Scholar
  7. Brown, D. M. &Todd, A. R. (1955). Evidence of the nature of the chemical bonds in nucleic acids. In:The nucleic acids (eds. E. Chagraff & J. N. Davidson), Vol 1, pp. 409–45. New York: Academic Press.Google Scholar
  8. Darzynkiewicz, Z., Traganos, F., Sharpless, T. &Melamed, M. R. (1975). Thermal denaturation of DNAin situ as studied by acridine orange staining and automated cytofluorometry.Expl. Cell Res. 90, 411–428.Google Scholar
  9. Davidson, J. N. (1973)Biochimica degli acidi nucleici. Padova: Ed. Piccin.Google Scholar
  10. De La Chapelle, A., Schroeder, J., Selander, R. K. (1973).In situ localization and characterization of different classes of chromosomal DNA: acridine orange and quinacrine mustard fluorescence.Chromosoma 40, 347–60.Google Scholar
  11. Diaz, M. (1972). Methyl green staining and highly repetitive DNA in polytene chromosomes.Chromosoma 37, 131–8.Google Scholar
  12. Engelhardt, W. A. (1975). Location of chromatin components. In:The structure and function of chromatin.Ciba Foundation Symposium, Vol. 28, pp. 337–51. Amsterdam: Elsevier Excerpta Medica. North Holland.Google Scholar
  13. Fraschini, A., De Stefano, G. F., Pellicciari, C. &Bernocchi, G. (1975). Evoluzione strutteusle della cromatina durante la maturazione delle cellule di Purkinje nel cervelletto di ratto.Boll. Zool. 42, 457–8. XLIII Congr. U.Z.I., Siena.Google Scholar
  14. Fraschini, A. &Pellicciari, C. (1976). II verde de metile come indicatore dello stato chimico-fisico del DNA nella cromatina interfasica.Riv. Istoch. Norm. Pat. 20, 95–6.Google Scholar
  15. Frenster, J. H. (1974). Ultrastructure and function of heterochromatin and euchromatin. In:The cell nucleus, Vol. 1, pp. 565–80. New York, London: Academic Press.Google Scholar
  16. Gurr, E. (1971).Synthetic dyes in biology Medicine and Chemistry, pp. 64–87. London: Academic Press.Google Scholar
  17. Kurnick, N. B. (1949). Methyl green-pyronin. I: Bases of selective staining of nucleic acids.J. Gen. Physiol. 33, 265–74.Google Scholar
  18. Kurnick, N. B. (1949). Methyl green-pyronin. II: stoichiometry of reaction with nucleic acids.J. Gen. Physiol. 33, 365–74.Google Scholar
  19. Kurnick, N. B. (1950). The quantitative estimation of deoxyribonucleic acid based on methyl green staining.Expl. Cell Res. 1, 151–8.Google Scholar
  20. Kurnick, N. B. (1952). The bases for the specificity of methyl green staining.Expl. Cell Res. 3, 649–51.Google Scholar
  21. Marmur, J. &Ts'o, P. O. P. (1961). Denaturation of deoxyribonucleic acid by formamide.Biochim. biophys. Acta 51, 32–6.Google Scholar
  22. More, J. A. R. &Paul, J. (1973). Template activity and electron microscopic appearance of salt-extracted chromatin.Expl. Cell. Res. 76, 79–86.Google Scholar
  23. Palay, S. L. &Chan Palay, V. (1974).Cerebellar cortex. Berlin: Springer Verlag.Google Scholar
  24. Pollister, A. W. &Leuchtenberger, C. (1949). The nature of the specificity of methyl green for chromatin.Proc. Natn. Acad. Sci. 35, 111–6.Google Scholar
  25. Rigler, R. (1966). Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange.Acta physiol. scand.,67, 7–123.Google Scholar
  26. Rigler, R. (1968). Microfluorometric determination of nucleic acids and nucleo-proteins in single cells by acridine orange. In:Macromolecules and the function of the neuron, (eds. Z. Lodin & S. P. R. Rose), pp. 3–12. Amsterdam: Excerpta Medica Found.Google Scholar
  27. Rigler, R. (1969). Acridine orange in nucleic acid analysis.Ann. N.Y. Acad. Sci. 157, 211–24.Google Scholar
  28. Scott, J. E. (1967). On the mechanism of the methyl green-pyronine stain for nucleic acids.Histochemie 9, 30–46.Google Scholar
  29. Senior, M. B., Olins, A. L. &Olins, D. E. (1975). Chromatin fragments resembling tov bodies.Science 187, 173–5.Google Scholar
  30. Smart, J. E. &Bonner, J. (1971). Selective dissociation of histones from chromatin by sodium deoxycholate.J. Molec. Biol. 58, 651–9.Google Scholar
  31. Stockert, J. C. &Lisanti, J. A. (1972). Acridine orange differential fluorescence of fast- and slow-reassociating chromosomal DNA afterin situ DNA denaturation and reassociation.Chromosoma,37, 117–30.Google Scholar
  32. Sumner, A. T., Evans, H. J. &Buckland, R. A. (1973). Mechanisms involved in the banding of chromosomes with quinacrine and Giemsa.Expl. Cell Res. 81, 214–22.Google Scholar
  33. Wertmur, J. G. &Davidson, N. (1968). Kinetics of renaturation of DNA.J. Molec. Biol. 31, 349–70.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • C. Pellicciari
    • 1
    • 2
  • A. Fraschini
    • 1
    • 2
  1. 1.Institute of Histology, Embryology and AnthropologyUniversity of PaviaItaly
  2. 2.Center for Study in Histochemistry of the C.N.R. by the University of PaviaItaly

Personalised recommendations