Advertisement

The Histochemical Journal

, Volume 10, Issue 2, pp 127–135 | Cite as

Post-mortem changes in human central nervous tissue and the effects on quantitation of nucleic acids and enzymes

  • D. M. A. Mann
  • C. M. Barton
  • J. S. Davies
Papers

Synopsis

A study of post-mortem changes in human central nervous tissue has shown that within 100 h of death, no significant change occurs in the amount of nerve cell DNA and nucleolar RNA nor in some membrane-associated enzymes such as succinate dehydrogenase, NADH and NADPH diaphorase, and cytochrome oxidase. Low molecular weight RNA species, probably transfer and messenger RNA are quickly lost, but there is little alteration in ribosomal RNA content. Cytoplasmic enzymes show variable changes; phosphofructokinase activity is rapidly decreased; hexokinase is unaltered but lactate dehydrogenase, pyruvate kinase and glucose-6-phosphate dehydrogenase initially show increases in activity which subsequently decline. Oxygen uptake diminishes quickly. These findings indicate that mechanical alterations in cell structure, following death, render organelles physiologically ineffective long before any significant changes in certain constituent biochemicals are detected.

This report emphasizes the great importance necessary in the selection of appropriately time matched post-mortem tissues if accurate comparative studies of many of the cells constituents are to be made.

Keywords

NADH Lactate Dehydrogenase Hexokinase Pyruvate Kinase Succinate Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, N. H. (1962). III. Alterations in the neuronal Golgi apparatus identified by nucleoside diphosphatase activity.Am. J. Path. 40, 243–52.Google Scholar
  2. Beutler, E. (1971).Red Cell Metabolism. New York: Gune and Stratton.Google Scholar
  3. Beisenherz, G. &Bucher, Th. (1953). Diphosphofructoaldolase, phosphoglyceraldehyd — dehydrogenase, Milchsäure-dehydrogenase, glycerophosphat — dehydrogenase und pyruvatknase aus Kaninchenmuskulateur in einem Arbeitsgang.Z. Naturforsch 8b, 555–77.Google Scholar
  4. Brown, A. W. &Brierley, J. B. (1971). In:Brain Hypoxia, Ch. 6 (eds. J. B. Brierley & B. S. Meldrum), pp. 49–60. London & Philadelphia: Heinemann Medical Books Ltd.Google Scholar
  5. Burstone, M. S. (1959). New histochemical techniques for the demonstration of tissue oxidase (cytochrome oxidase).J. Histochem. Cytochem. 7, 112–22.Google Scholar
  6. Kornberg, A. &Horecker, B. L. (1955). In:Methods in Enzymology. Vol. 1. New York and London: Academic Press.Google Scholar
  7. Lowry, O. H., Rosebrough N. J., Farr, A. L. &Randall, R. J. (1951). Protein measurement with the Folin Phenol Reagent.J. biol. Chem. 193, 265–75.Google Scholar
  8. Majno, G., LaGuttata, M. &Thompson, T. E. (1960). Cellular death and necrosis: — chemical, physical and morphologic changes in rat liver.Virchows Arch. 333, 421–65.Google Scholar
  9. Mann, D. M. A. &Yates, P. O. (1973). Polyploidy in the human nervous system. Part 1. The DNA content of neurones and glia of the cerebelum.J. Neurol. Sci. 18, 183–96.Google Scholar
  10. Mann, D. M. A. &Yates, P. O. (1974). Lipoprotein pigments — their relationship to ageing in the human nervous system. I. Lipfuscin content of nerve cells.Brain 97, 481–8.Google Scholar
  11. Mann, D. M. A., Yates, P. O. &Barton, C. M. (1977). Melanin and RNA in cells of the human substantia nigra.J. Neuropath. exp. Neurol. 36, 379–83.Google Scholar
  12. Meyer, A. (1960). In:Neuropathology (ed. J. G. Greenfield) London: Arnold Press.Google Scholar
  13. Opie, L. H. &Newsholme, E. A. (1967). The activities of fructose 1–6 diphosphate, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle.Biochem. J. 103, 391–9.Google Scholar
  14. Pearse, A. G. E. (1972).Histochemistry. Theoretical and Applied Vol. 2, 3rd Edn. London: Churchill Livingstone.Google Scholar
  15. Scarpelli, D. G., Hess, R. &Pearse, A. G. E. (1958). The cytochemical localization of oxidative enzymes. II. Pyridine nucleotide — linked dehydrogenases.J. biophys. biochem. Cytol. 4, 747–52.Google Scholar
  16. Shea, J. R. (1970). A method for thein situ cytophotometric estimation of absolute amounts of RNA using Azure B.J. Histochem. Cytochem. 18, 143–52.Google Scholar
  17. Spector, R. G. (1961). Water Content of the brain in anoxic ischaemic encephalopathy in adult rats.Br. J. exp. Path. 42, 623–30.Google Scholar
  18. Van Nimwegen, D. &Sheldon, H. (1966). Early post-mortem changes in cerebellar neurones of the rat.J. Ultrastruct. Res. 14, 36–46.Google Scholar
  19. Watson, W. E. (1968). Observations on the nucleolar and total cell body nucleic acid of injured nerve cells.J. Physiol. (Lond),196, 655–76.Google Scholar
  20. Watson W. E. (1974). Cellular responses to axotomy and related procedures.Br. med. Bull. 30, 112–15.Google Scholar
  21. Wroblewski, F. &LaDue, J. S. (1955). Lactic dehydrogenase activity in blood.Proc. Soc. exp. Biol. Med., N.Y. 90, 210–13.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • D. M. A. Mann
    • 1
  • C. M. Barton
    • 1
  • J. S. Davies
    • 1
  1. 1.Department of Pathology, The Medical SchoolManchester UniversityManchesterUK

Personalised recommendations