Advertisement

The Histochemical Journal

, Volume 17, Issue 2, pp 131–142 | Cite as

Application of 7-amino-actinomycin D for the fluorescence microscopical analysis of DNA in cells and polytene chromosomes

  • Natalia G. Stepanova
  • Sergei M. Nikitin
  • Flora S. Valeeva
  • Olga N. Kartasheva
  • Alexey L. Zhuze
  • Alexander V. Zelenin
Papers

Summary

The cytochemical properties of a guanine-specific synthetic fluorescent analogue of actinomycin D, 7-amino-actinomycin D, have been studied in fixed and living preparations of L cells and polytene chromosomes of salivary glands ofChironomus thummi thummi andDrosophila lummei (Hackman).

7-Amino-actinomycin D has been shown to bind to DNA-containing structures, thereby inducing in them a bright red fluorescence. No specific fluorescence has been found in RNA-containing structures treated with this fluorescent probe.

The fluorescence pattern of some regions of polytene chromosomes with a known nucleotide composition was analysed. It has been established that 7-amino-actinomycin D induces a very weak fluorescence in GC-poor chromosome regions of theDrosophila lummei toromere structure. Data indicating a nonlinear dependence between the fluorescence intensity of a stained chromosome region and the GC content in its DNA have been obtained. The influence of DNA nucleotide composition in a chromosome region on the fluorescence of 7-amino-actinomycin D is discussed. In combination with quinacrine staining and the Feulgen fluorescence reaction, treatment with 7-amino-actinomycin D provides useful information about the distribution of GC base pairs in the chromosome region under study.

Keywords

Chromosome Region Actinomycin Polytene Chromosome Nucleotide Composition Quinacrine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comings, D. E. (1975) Mechanisms of chromosome banding. VIII. Hoechst 33258 interaction.Chromosoma 52, 229–43.Google Scholar
  2. Comings, D. E., Kovacs, B. W., Avelino, E. &Harris, D. C. (1975) Mechanisms of chromosome banding. V. Quinacrine banding.Chromosoma 50, 111–45.Google Scholar
  3. Cowden, R. R. &Curtis, S. K. (1981) Microfluorometric investigaton of chromatin structure. I. Evaluation of nine DNA-specific fluorochromes as probes of chromatin organization.Histochemistry 72, 11–23.Google Scholar
  4. Evgen'ev, M. B., Stepanova, N. G., Levin, A. A., Shilov, A. S. &Tchernishov, A. T. (1983) Molecular nature of toromere inDrosophila lummei Hackman and its role in chromosome behavior.Karyologia 36, 89–99.Google Scholar
  5. Hägele, K. (1970) DNA-Replikationenmuster der Speicheldriisen chromosomen ofChironomiden.Chromosoma 31, 91–138.Google Scholar
  6. Hayasaka, T. &Inoue, Y. (1969) Chromomycin A3 studies in aqueous solutions. Spectrophotometric evidence for aggregation and interaction with herring sperm deoxyribonucleic acid.Biochem. 8, 2342–7.Google Scholar
  7. Hilwig, J. &Gropp, A. (1972) Stains of constitutive heterochromatin in mammalian chromosome with a new fluorochrome.Expl. Cell Res. 75, 122–6.Google Scholar
  8. Khachaturov, E. N. &Smirnova, E. A. (1966) Use rivanol-SO2 for the cytofluorimetry of DNA.Izvestija Akademii Nauk USSR, seria biol. 6, 900–5.Google Scholar
  9. Kersten, W. (1961) Interaction of actinomycin D with constituents of nucleic acids.Biochim. biophys. Acta 47, 610–11.Google Scholar
  10. Krugh, T. R., Hook, L. W. III, Lin, S. L. &Chen Fu-Ming (1979) Spectroscopic studies of drug nucleic acid complexes. InStereodynamics of Molecular Systems (edited bySarma, R. H.), pp. 423–35. Oxford: Pergamon Press.Google Scholar
  11. Latt, S. A., Sahar, E. &Eisenhard, M. E. (1979) Pairs of fluorescent dyes as probes of DNA and chromosomes.J. Histochem. Cytochem. 27, 65–9.Google Scholar
  12. Leeman, U. &Ruch, F. (1978) Selective excitation of mithramycin or DAPI fluorescence on double-stained cell nuclei and chromosomes.Histochemistry 58, 329–34.Google Scholar
  13. Mikhailov, M. V., Nikitin, S. M., Zasedatelev, A. S., Zhuze, A. L., Gursky, G. V., Smirnov, I. V. &Gottikh, B. P. (1980) Binding of actinomycin D analogues to DNA.Biophysica (USSR) 25, 803–9.Google Scholar
  14. Mikhailov, M. V., Zasedatelev, A. S. &Gursky, G. V. (1982) Determination of the number of GC pairs recognized with actinomycin D during the binding with DNA.Biophysica (USSR) 27, 14–16.Google Scholar
  15. Modest, E. J. &Sengupta, S. K. (1974) 7-substituted actinomycin D (NGG-3035) analogs as fluorescent DNA-binding and experimental antitumor agents.Cancer Chemother. Rep. Part1, 58, 35.Google Scholar
  16. Modest, E. J., Sengupta, S. K. &Tinter, S. K. (1973) 7-substituted actinomycin D analogs as biologically useful agents (abstract).Proc. Am. Ass. Cancer Res. 14, 87.Google Scholar
  17. Müller, W. &Crothers, D. M. (1968) Studies of the binding of actinomycin D and related compounds to DNA.J. molec. Biol. 35, 251–90.Google Scholar
  18. Müller, W. &Crothers, D. M. (1975) Interaction of heteroaromatic compounds with nucleic acid. I. The influence of heteroatoms and polarizability on the base specificity of intercalating ligands.Eur. J. Biochem. 54, 267–77.Google Scholar
  19. Nikitin, S. M., Grokhovsky, S. L., Zhuze, A. L., Mikhailov, M. V., Zasedatelev, A. S., Gursky, G. V. &Gottikh, B. P. (1981) DNA base pair sequence specific ligands. V. Actinomycin D analogs substituted at position 7 of phenoxasone chromophore.Bioorganicheskaya khimiya (USSR) 7, 542–51.Google Scholar
  20. Pachmann, U. &Rigler, R. (1972) Quantum yield of acridines interacting with DNA of defined base sequence.Expl Cell Res. 72, 602–8.Google Scholar
  21. Sande Van De, J. H., Lin, C. C. &Jorgenson, K. E. (1977) Reverse banding on chromosomes produced by guanosin-cytosin specific DNA binding antiobiotic: olivomycin.Science 195, 400–2.Google Scholar
  22. Schmidt, E. R. (1980) The AT rich satellite DNAs in theChironomid Glyptotendipes barbipes (Staeger). Isolation and localization in polytene chromosomes ofG. barbipes andChironomus thummi.Chromosoma 79, 315–28.Google Scholar
  23. Schmidt, E. R., Vistorin, G. &Keil, H.-G. (1980) At AT rich DNA component in the genomes ofChironomus thummi thummi andChironomus thummi piger.Chromosoma 76, 35–45.Google Scholar
  24. Schnedl, W., Breitenbach, M., Mikelsaar, A.-V. &Stranzinger, G. (1977) Mithramycin and DIPI: A pair of fluorochromes specific for GC and AT rich DNA, respectively.Hum. Genet. 36, 299–309.Google Scholar
  25. Schweizer, D. (1976a) A DAPI fluorescence of plant chromosomes prestained with actinomycin D.Expl Cell Res. 102, 408–13.Google Scholar
  26. Schweizer, D. (1976b) Reverse fluorescent chromosome banding with chromomycin and DAPI.Chromosoma 58, 307–24.Google Scholar
  27. Sengupta, S. K. &Modest, E. J. (1973) Neighbouring DNA base pair effects on fluorescence enhancement in fluorochrome: polynucleotide interactions.Fedn Proc. 32, 579.Google Scholar
  28. Sengupta, S. K. &Schaer, D. (1978) The interactions of 7-substituted actinomycin D analogs with DNA.Biochim. biophys Acta 521, 89–100.Google Scholar
  29. Sengupta, S. K., Tinter, S. K., Lazarus, H., Brown, B. L. &Modest, E. J. (1975) 7-substituted actinomycin D analogs. Chemical and growth-inhibitory studies.J. Med. Chem. 18, 1175–80.Google Scholar
  30. Sinibaldi, R. M., Grilli, M. E. &Barr, H. J. (1976) Characterization of toromeric structure inDrosophila lummei.Chromosoma 58, 63–71.Google Scholar
  31. Ward, D., Reich, E. &Goldberg, I. H. (1965) Base specificity in the interaction of polynucleotides with antibiotic drugs.Science 149, 1259–63.Google Scholar
  32. Weissblum, B. &De Haseth, P. L. (1972) Quiacrine a chromosome stain specific for deoxyadenylate-deoxythymidilate-rich regions in DNA.Proc. Natn Acad. Sci. USA 69, 629–32.Google Scholar
  33. Zelenin, A. V., Kushch, A. A. &Chebanu, T. A. (1977) Peculiarities of cytochemical properties of cancer cells as revealed by study of deoxyribonucleoprotein susceptibility to Feulgen hydrolysis.J. Histochem. Cytochem. 25, 580–4.Google Scholar
  34. Zelenin, A. V., Poletaev, A. I., Stepanova, N. G., Barsky, V. E., Kolesnikov, V. A., Nikitin, S. M., Zhuze, A. L. &Gnutchev, N. V. (1984) 7-amino-actinomycin D as a specific fluorochrome for the DNA content analysis by laser flow cytometry.Cytometry 5, 348–54.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • Natalia G. Stepanova
    • 1
  • Sergei M. Nikitin
    • 1
  • Flora S. Valeeva
    • 2
  • Olga N. Kartasheva
    • 1
  • Alexey L. Zhuze
    • 1
  • Alexander V. Zelenin
    • 1
  1. 1.Institute of Molecular BiologyUSSR Academy of SciencesMoscowUSSR
  2. 2.Institute of Cytology and GeneticsSiberian Branch of USSR Academy of SciencesNovosibirsk-90USSR

Personalised recommendations