Advertisement

The Histochemical Journal

, Volume 10, Issue 4, pp 399–408 | Cite as

Enzyme histochemical studies on the Purkinje fibres of the arrioventricular system of the bovine and porcine hearts

  • A. E. F. H. Meijer
  • G. P. de Vries
Papers

Synopsis

In this communication the results of applying various histochemical semipermeable membrane techniques to the localization of several enzymes in bovine and procine heart are presented. The Purkinje fibres of the atrioventricular conducting system of the bovine heart differ from the myocardium proper in containing a greater activity of the glycolytic and gluconeogenetic enzymes—lactate dehydrogenase, glyceraldehyde-phosphate dehydrogenase, hexokinase, glucosephosphate isomerase and phosphoglucomutase, and less activity of the aerobic enzymes-NADH: nitroBT oxidoreductase and isocitrate dehydrogenase (NADP+). The metabolic reactions obtained with Purkinje fibres of the porcine heart are less pronounced. These histochemical findings are in accordance with the impression that Purkinje fibres, compared with the common myocardial fibres, have a higher rate of anaerobic metabolism and a lower rate of aerobic metabolism.

The activity of the NADPH regenerating enzymes, glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase (decarboxylating), and the activity of acid hydrolases such as non-specific esterase and acid phosphatase is higher in the Purkinje fibres of both the bovine and porcine heart.

Keywords

Hexokinase Isocitrate Phosphogluconate Purkinje Fibre Atrioventricular Conducting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcine, E., Lageron, A. &Wegman, R. (1965). Étude histoenzymologique du métabolism glucidique du faisceau de His à différent niveaux et du myocarde ventriculaire, chez le rat.Annls, Histochim. 10, 127–44.Google Scholar
  2. Altmann, F. P. &Chayen, J. (1966). The significance of a functioning hydrogen transport system for the retention of ‘soluble’ dehydrogenases in unfixed sections.Jl. R. microsc. Soc. 85, 175–80.Google Scholar
  3. Arnold, F., Kunze, K. D. &Grossmann, H. (1968). Über den Einfluss der Gelinkubation mit Polyvinylalkohol auf die Löslichkeit der Fructose-1, 6-diphosphat-aldolase.Histochemie 13, 196–202.Google Scholar
  4. Aschoff, L. (1908). Über den Glykogengehalt des Reizleitungssystems des Säugetierherzens.Verh. dt. path. Ges. 12, 150–3.Google Scholar
  5. Boxer, G. E. &Devlin, T. M. (1961). Pathways of intracellular hydrogen transport.Science 134, 1495–501.Google Scholar
  6. Burstone, M. S. (1962).Enzyme histochemistry. New York: Academic Press.Google Scholar
  7. Carbonell, L. M. (1954a). Phosphorylase and conductive system of the heart.J. Histochem. Cytochem. 3, 419.Google Scholar
  8. Carbonell, L. M. (1955b). Esterases of the conductive system of the heart.J. Histochem. Cytochem. 4, 87–95.Google Scholar
  9. Fahimi, H. D. &Amarasingham, C. R. (1964). Cytochemical localization of lactic dehydrogenase in white skeletal muscle.J. Cell Biol. 22, 29–48.Google Scholar
  10. Gossrau, R. (1968). Über das Reizleitungssystem der Vögel. Histochemische und eletronenmikroskopische Untersuchungen.Histochemie 13, 111–59.Google Scholar
  11. Himmelhoch, S. R. &Karnovsky, M. J. (1961). The histochemical demonstration of glyceraldehyde-3-phosphate dehydrogenase activity.J. biophys. biochem. Cytol. 9, 573–81.Google Scholar
  12. Kalina, M. &Gahan, P. B. (1965). A quantitative study of the validity of the histochemical demonstration for pyridine nucleotide-linked dehydrogenases.Histochemie 5, 430–6.Google Scholar
  13. Kaplan, N. O. &Goodfriend, T. L. (1964). Role of the two types of lactic dehydrogenase. In:Advances in enzyme regulation (ed. G. Weber) vol. 2, pp. 203–12, London: Pergamon Press.Google Scholar
  14. Krebs, H. A. (1954). Considerations concerning the pathways of synthesis in living matter.Bull. Johns Hopkins Hosp. 95, 19–33.Google Scholar
  15. Marchand, F. (1885). Über eine Geschwulst aus quergestreiften Muskelfasern mit ungewöhnlichem Gehalte an Glykogen, nebst Bemerkungen über das Glycogen in einigen fötalen Geweben.Virchows Arch. path. Anat. Physiol. 100, 42–65.Google Scholar
  16. Meijer, A. E. F. H. (1972). Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. I. Acid phosphatase.Histochemie 30, 31–9.Google Scholar
  17. Meijer, A. E. F. H. (1973). Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. III. Lactate dehydrogenase.Histochemie 35, 165–72.Google Scholar
  18. Meijer, A. E. F. H. (1975). Zur Histochemie der Enzyme.Acta histochemica, Suppl. Ed.XIV, 33–46.Google Scholar
  19. Meijer, A. E. F. H. &Vloedman, A. H. T. (1973). Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. II. Non specific esterase and β-glucuronidase.Histochemie 34, 127–34.Google Scholar
  20. Meijer, A. E. F. H. &De Vries, G. P. (1974). Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. IV. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (decarboxylating).Histochemistry 40, 349–59.Google Scholar
  21. Meijer, A. E. F. H. &De Vries, G. P. (1975). Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. V. Isocitrate: NADP+ oxidoreductase (decarboxylating) and malate: NADP+ oxidoreductase (decarboxylating).Histochemistry 43, 225–36.Google Scholar
  22. Meijer, A. E. F. H., Benson, D. &Scholte, H. R. (1977). The influence of freezing and freeze-drying of tissue specimens on enzyme activity.Histochemistry.51, 297–303.Google Scholar
  23. Otsuka, N., Hara, T. &Okamoto, H. (1967). Histopochemische Untersuchungen am Reizleitungssystem des Hundeherzens.Histochemie 10, 66–73.Google Scholar
  24. Schiebler, T. H. (1953). Herzstudie. I. Mitt. Histochemische Untersuchungen der Purkinje-Fasern von Säugern.Z. Zellforsch. 39, 152–67.Google Scholar
  25. Schiebler, T. H. (1955). Herzstudie. II. Mitt. Histologische, histochemische und experimentelle Untersuchungen am Atrioventricularsystem von Huf- und Nagetieren.Z. Zellforsch. 43, 243–306.Google Scholar
  26. Schiebler, T. H. (1961). Histochemische Untersuchungen am Reizleitungssystem tierischer Herzen.Naturwissenschaften 14, 502–3.Google Scholar
  27. Schiebler, T. H. (1963). Über den histochemischen Nachweis von Atmungsfermenten im Reizleitungssystem.Anat. Anz. 111, (Erg. Heft), 103–12.Google Scholar
  28. Schiebler, T. H., Stark, M. &Caesar, R. (1956). Die stoffwechselsituation des Reizleitungssystems.Klin. Wschr. 34, 181–3.Google Scholar
  29. Snijder, J. &Meijer, A. E. F. H. (1970). Enzyme histochemical studies on the Purkinje fibres of canine, bovine and porcine hearts.Histochem. J. 2, 395–409.Google Scholar
  30. Spamer, C. &Pette, D. (1977). Activity pattern of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle.Histochemistry 52, 201–16.Google Scholar
  31. Utter, M. F. (1959). The role of CO2 fixation in carbohydrate utilization and synthesis.Ann. N.Y. Acad. Sci. 72, 451–61.Google Scholar
  32. De Vries, G. P. &Meijer, A. E. F. H. (1976). Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. VI. D-Glucose-6-phosphate isomerase and phosphoglucomutase. Histochemistry50, 1–8.Google Scholar
  33. Wattenberg, L. W. &Leong, J. L. (1960). Effect of coenzyme Q10 and menadione on succinic dehydrogenase activity as measured by tetrazolium salt reduction.J. Histochem. Cytochem. 8, 296–303.Google Scholar
  34. Wilson, A. C., Cahn, R. D. &Kaplan, N. O. (1963). Functions of the two forms of lactic dehydrogenase in the breast muscle of birds.Nature (Lond.)197, 331–4.Google Scholar
  35. Wood, H. G. &Utter, M. F. (1965). The role of CO2 fixation in metabolism. In:Essays in Biochemistry. Vol. I. (eds. P. N. Campbell & G. D. Greville), pp. 1–27. London & New York: Academic Press.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • A. E. F. H. Meijer
    • 1
  • G. P. de Vries
    • 1
  1. 1.Laboratory of Pathological Anatomy, Histochemical and Biochemical SectionWilhelmina GasthuisAmsterdam-WestThe Netherlands

Personalised recommendations