Advertisement

The Histochemical Journal

, Volume 21, Issue 12, pp 693–701 | Cite as

Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord

  • Z. Lukáš
  • P. Dráber
  • J. Buček
  • E. Dráberová
  • V. Viklický
  • Z. Staškova
Papers

Summary

Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.

Keywords

Spinal Cord Monoclonal Antibody Glial Cell Grey Matter Glial Fibrillary Acidic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antanitus, D. S., Choi, B. H. &Lapham, L. W. (1976) The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence.Brain Res. 103, 613–16.Google Scholar
  2. Backhovens, H., Gheuens, J. &Slegers, H. (1987) Expression of glial fibrillary acidic protein in rat CG glioma relates to vimentin and is independent of cell-cell contact,J. Neurochemistry 49, 348–54.Google Scholar
  3. Bennett, G. S., Fellini, S. A., Toyama, Y. &Holtzer, H. (1979) Redistribution of intermediate filament subunits during skeletal myogenesis and maturationin vitro.J. Cell. Biol. 82, 577–84.Google Scholar
  4. Bergh, J., Nilsson, K., Dahl, D., Andersson, L., Virtanen, I. &Lehto, V. P. (1984) Expression of intermediate filaments in established human lung cancer cell lines.Lab Invest. 51, 307–16.Google Scholar
  5. Bignami, A., Raju, T. &Dahl, D. (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons.Develop. Biol. 91, 286–95.Google Scholar
  6. Björklund, H., Eriksdotter-Nilsson, M., Dahl, D. &Olson, L. (1984) Astrocytes in smears of CNS tissues as visualized by GFA and vimentin immunofluorescence.Med. Biol. 62, 38–48.Google Scholar
  7. Brandtzaeg, P. (1973) Conjugates of immunoglobulin G with different fluorochromes. I. Characterization by anionic exchange chromatography.Scand J. Immunol. Suppl.2, 273–90.Google Scholar
  8. Choi, B. H. (1981) Radial glia of developing human fetal spinal cord: Golgi immunohistochemical and electron microscopic study.Dev. Brain Res. 1, 249–67.Google Scholar
  9. Choi, B. H. &Kim, R. C. (1984) Expression of glial fibrillary acidic protein in immature oligodendroglia.Science 223, 407–9.Google Scholar
  10. Cochard, P. &Paulin, D. (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryoin vivo.J. Neurosci. 4, 2080–94.Google Scholar
  11. Dahl, D. (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination.6, 741–48.Google Scholar
  12. Dahl, D., Bignami, A., Weber, K. &Osborn, M. (1981) Filament proteins in rat optic nerves undergoing Wallering degeneration: localization of vimentin, the fibroblastic 100-Å filament protein, in normal and reactive astrocytes.Exp. Neurol. 73, 496–506.Google Scholar
  13. Dahl, D., Rueger, D. C. &Bignami, A. (1981b) Vimentin, the 57 000 molecular weight protein of fibroblast filaments, the major cytoskeletal component in immature glia.Eur. J. Cell. Biol. 24, 191–6.Google Scholar
  14. Dráber, P., Lagunowich, L. A., Dráberová, E., Viklický, V. &Damjanov, I. (1988) Heterogeneity of tubulin epitopes in mouse fetal tissues.Histochemistry 89, 485–92.Google Scholar
  15. Dráberová, E., Dráber, P., Havlíček, F. &Viklický, V. (1986) A common antigenic determinant of vimentin and desmin defined by monoclonal antibody.Folia Biol. Praha 32, 295–303.Google Scholar
  16. Erlandson, R. A. (1984) Diagnostic immunohistochemistry of human tumours.Am J. Surg. Pathol. 8, 615–24.Google Scholar
  17. Ghatak, N. R. &Nochlin, D. (1982) Glial outgrowth along spinal nerve roots in amyotrophic lateral sclerosis.Ann. Neurol. 11, 203–6.Google Scholar
  18. Holtzer, H., Bennett, G. S., Tapscott, S. J., Croop, J. M. &Toyama, Y. (1981) Intermediate-size filaments: changes in synthesis and distribution in cells of the myogenic and neurogenic lineages.Cold Spring Harbor Symp. Quant. Biol. 46, 317–29.Google Scholar
  19. Houle, J. &Fedoroff, S. (1983) Temporal relationship between the appearance of vimentin and neural tube development.Dev. Brain Res. 9, 189–95.Google Scholar
  20. Kleihues, P., Kiessling, M. &Janzer, R. C. (1987) Morphological markers in neuro-oncology.Current Topics in Pathology 77: Morphological Tumor Markers (edited bySeifert, G.) Berlin, Heidelberg: Springer-Verlag.Google Scholar
  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.Google Scholar
  22. Lazarides, E. (1980) Intermediate filaments as mechanical integrators of cellular space.Nature 283, 249–55.Google Scholar
  23. Levitt, P. &Rakic, P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.J. Comp. Neurol. 193, 815–40.Google Scholar
  24. Levitt, P., Cooper, M. L. &Rakic, P. (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone.Develop. Biol. 96, 472–84.Google Scholar
  25. Lukáš, Z., Viklický, V., Dráber, P. &Feit, J. (1987) Reactivity of monoclonal antibody against vimentin and desmin in human tissues.Čs. Pathol. 23, 169–73.Google Scholar
  26. Mareš, V., Viklický, V., Gerštein, L. M., Dráber, P. &Ciesielski-Treska, J. (1988) Immunocytochemistry and heterogeneity of rat brain vimentin.Histochemistry 88, 575–81.Google Scholar
  27. Moremans, M., Daneels, G. &DeMey, J. (1985) Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membranes.Anal. Biochem. 145, 315–21.Google Scholar
  28. Moll, R., Franke, W. W. &Schiller, D. L. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.Cell 31, 11–24.Google Scholar
  29. Osborn, M., Geisler, N., Shaw, G., Sharp, G. &Weber, K. (1982) Intermediate filaments.Cold Spring Harbor Symp. Quant. Biol. 46, 413–29.Google Scholar
  30. Osborn, M., Ludwig-Festl, M., Weber, K., Bignami, A., Dahl, D. &Bayreuther, K. (1981) Expression of glial and vimentin type intermediate filaments in cultures derived from human glial material.Differentiation 19, 161–7.Google Scholar
  31. Perentes, E. &Rubinstein, L. J. (1987) Recent applications of immunoperoxidase histochemistry in human neurooncology.Arch. Pathol. Lab. Med. 111, 796–812.Google Scholar
  32. Polak, J. M. & Van Noorden, C. (1984)An Introduction to Immunocytochemistry: Current Techniques and Problems. Oxford University Press.Google Scholar
  33. Roessmann, U. &Gambetti, P. (1986) Astrocytes in the developing human brain.Acta Neuropathol. (Berl) 70, 308–13.Google Scholar
  34. Roessmann, U., Velasco, E. M., Sindely, S. D. &Gambetti, P. (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study.Brain Res. 200, 13–21.Google Scholar
  35. Schlaepfer, W. W., Freeman, L. A. &Eng, L. F. (1979) Studies of human and bovine spinal nerve roots and the outgrowth of CNS tissues into the nerve root entry zone.Brain Res. 177, 219–29.Google Scholar
  36. Schmechel, D. E. &Rakic, P. (1979) Arrested proliferation of radial glial cells during midgestation in rhesus monkey.Nature (Lond) 277, 303–5.Google Scholar
  37. Schnitzer, J., Franke, W. W. &Schachner, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system.J. Cell. Biol 90, 435–47.Google Scholar
  38. Shaw, G., Osborn, M. &Weber, K. (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain.Eur. J. Cell. Biol. 26, 68–82.Google Scholar
  39. Shelanski, M. L., Gaskin, F. &Cantor, C. R. (1973) Microtubule assembly in the absence of added nucleotides.Proc. Natl. Acad. Sci. USA 70, 765–68.Google Scholar
  40. Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 76, 4350–4.Google Scholar
  41. Viklický, V., Dráber, P., Hašek, J. &Bártek, J. (1982) Production and characterization of monoclonal antitubulin antibody.Cell Biol. Int. Rep. 6, 725–31.Google Scholar
  42. Yen, S. H. &Fields, K. L. (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system.J. Cell Biol. 88, 115–26.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Z. Lukáš
    • 1
  • P. Dráber
    • 2
  • J. Buček
    • 1
  • E. Dráberová
    • 2
  • V. Viklický
    • 2
  • Z. Staškova
    • 3
  1. 1.2nd Department of Pathology, Medical Faculty of J. E. Purkyně UniversityChildren's HospitalBrnoCzechoslovakia
  2. 2.Institute of Molecular GeneticsCzechoslovak Academy of SciencesPragueCzechoslovakia
  3. 3.Research Institute of Clinical and Experimental OncologyBrnoCzechoslovakia

Personalised recommendations