Advertisement

The Histochemical Journal

, Volume 11, Issue 4, pp 425–434 | Cite as

Heterogeneity in distribution of cardiac glycogen following isoproterenol infusions in the dog

  • G. L. Todd
  • G. M. Pieper
  • F. C. Clayton
  • R. S. Eliot
Papers

Synopsis

A combined biochemical, histochemical and cytochemical study was made of cardiac glycogen distribution following intravenous infusions of varying doses of isoproterenol in anaesthetized, open-chested dogs. There was a dose-dependent decrease in glycogen levels in biopsies of the posterolateral wall of the left ventricle which also exhibited a transmural gradient with the endocardial third the most severely affected. Periodic acid-Schiff (PAS) histochemical studies also suggested a transmural gradient. There was, however, a marked variability within each layer, particularly the large amounts in the conduction system fibres. The ultrastructural studies exhibited a marked variation in glycogen content from one cell to the next. This was particularly evident in the complete absence of granules in the contraction band lesions of isoproterenol cardiotoxicity yet substantial amounts were retained in neighbouring cells. Isoproterenol, therefore, produces a heterogenous depletion of cardiac glycogen related to the scattered catecholamine-induced myocardial cellular lesions. These relationships have not previously been documented or emphasized.

Keywords

Isoproterenol Marked Variation Glycogen Content Conduction System Histochemical Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barner, H. B., Jellinek, M. &Kaiser, G. C. (1970). Effects of isoproterenol infusion on myocardial structure and composition.Am. Heart J. 79, 237–43.Google Scholar
  2. Baroldi, G. (1975). Different types of myocardial necrosis in coronary heart disease: pathophysiologic review of their functional significance.Am. Heart J. 89, 742–52.Google Scholar
  3. Bergmeyer, H. U., Berndt, E., Schmidt, F. &Stork, H. (1974). Determination of glucose. In:Methods of Enzymatic Analysis, pp. 1196–1201. New York: Academic Press.Google Scholar
  4. Bloom, S. &Cancilla, P. A. (1969). Myocytolysis and mitochondrial calcification in rat myocardium after low doses of isoproterenol.Am. J. Path. 54, 373–91.Google Scholar
  5. Buja, L. M., Ferrans, V. J. &Levitsky, S. (1972) Occurrence of intramitochondrial glycogen in canine myocardium after prolonged anoxic cardiac arrest.J. Mol. Cell. Cardiol. 4, 237–54.Google Scholar
  6. Courtoy, R. &Simar, L. J. (1974). Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methanamine or the thiocarbohydrazide-silver proteinate methods.J. Microscopie 100, 199–211.Google Scholar
  7. Crass, M. F. III, Holsinger, J. W., Shipp, J. C., Eliot, R. S., &Pieper, G. M. (1976). Transmural gradients in the ischemic dog left ventricle: metabolism of endogenous triglycerides and glycogen. InRecent Advances in Studies on Cardiac Structure and Metabolism, Vol. 7, pp. 225–230, Baltimore: University Park Press.Google Scholar
  8. Crass, M. F. III, &Pieper, G. M. (1975a) Lipid and glycogen metabolism in the hypoxic heart: effects of epinephrine.Am. J. Physiol. 229, 885–9.Google Scholar
  9. Crass, M. F. III, Shipp, J. C. &Pieper, G. M. (1975b). Effects of catecholamines on myocardial endogenous substrates and contractility.Am. J. Physiol. 228, 618–27.Google Scholar
  10. Crass, M. F. III, &Sterrett, P. R. (1975). Distribution of glycogen and lipids in the ischemic canine left ventricle: biochemical and light and electron micrscopic correlates. In:Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 10, pp. 251–263, Baltimore: University Park Press.Google Scholar
  11. Eliot, R. S., Clayton, F. C., Pieper, G. M. &Todd, G. L. (1977). Influence of environmental stress on pathogenesis of sudden cardiac death.Fed. Proc. 36, 1619–24.Google Scholar
  12. Eliot, R. S., Todd, G. L., Clayton, F. C. &Pieper, G. M. (1978). Experimental catecholamine-induced acute myocardial necrosis.Adv. Cardiol. 25, 107–18.Google Scholar
  13. Ferrans, V. I., Buja, L. M. &Jones, M. (1976). Ultrastructure and cytochemistry of glycogen in cardiac diseases. In:Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 3. pp. 97–144 Baltimore: University Park Press.Google Scholar
  14. Ferrans, V. J., Hibbs, R. G., Black, W. C., &Weilbaecher, D. C. (1964). Isoproterenol-induced myocardial necrosis. A histochemical and electron microscopic study.Am. Heart J. 68, 71–90.Google Scholar
  15. Ferrans, V. J., Hibbs, R. G., Walsh, J. J. &Burch, G. E. (1969). Histochemical and electron microscopical studies on the cardiac necroses produced by sympathomimetic agents.Ann. N. Y. Acad. Sci. 156, 309–32.Google Scholar
  16. Ferrans, V. J., Hibbs, R. G., Weily, H. S., Weilbaecher, D. G., Walsh, J. J. &Burch, G. E. (1970). A histochemical and electron microscopic study of epinephrine-induced myocardial necrosis.J. Mol. Cell. Cardiol. 1, 11–22.Google Scholar
  17. Good, C. A., Kramer, H. &Somogyi, M. (1933). Determination of glycogen.J. biol. Chem. 100, 485–91.Google Scholar
  18. Hara, T. (1967). Morphological and histochemical studies on the cardiac conduction system of the dog.Arch. Histol. Jap. 28, 227–46.Google Scholar
  19. Ichihara, K. &Abiko, Y. (1975a). Glycogen metabolism and the effect of nitroglycerin on the glycogen metabolism in the normal and ischemic canine myocardium.Experientia 31, 477–79.Google Scholar
  20. Ichihara, K. &Abiko, Y. (1975b). Effect of dipyridamole on the glycogen metabolism in the normal and ischemic canine myocardium.Experientia 31, 1198–9.Google Scholar
  21. Jedeikin, L. A. (1964). Regional distribution of glycogen and phosphorylation in the ventricles of the heart.Circ. Res. 14, 202–11.Google Scholar
  22. Thiery, J. (1967). Mise en évidence des polysaccharides sur coupes fines en microscopie electronique.J. Microscopie 6, 987–1018.Google Scholar
  23. Thornell, L.-E. &Sjostrom, M. (1975). Purkinje fibre glycogen. A morphologic and biochemical study of glycogen particles isolated from the cow conducting system.Basic Res. Cardiol. 70, 661–70.Google Scholar
  24. Troyer, H. &Rosenquist, T. H. (1975). Atomic absorption spectrophotometry applied to photographic densitometry.J. Histochem. Cytochem. 23, 941–4.Google Scholar
  25. Williams, B. J. &Mayer, S. E. (1966). Hormonal effects on glycogen metabolism in the rat heartin situ.Mol. Pharmacol. 2, 454–64.Google Scholar
  26. Williamson, J. R. (1964). Metabolic effects of epinephrine in the isolated, perfused rat heart. I. Dissociation of the glycogenolytic from the metabolic stimulatory effect.J. biol. Chem. 239, 2721–9.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • G. L. Todd
    • 2
    • 3
  • G. M. Pieper
    • 1
  • F. C. Clayton
    • 1
  • R. S. Eliot
    • 2
  1. 1.The Cardiovascular CenterUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.The Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.The Department of AnatomyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations