Skip to main content
Log in

An enzyme histochemical study of isoproterenol-induced myocardial necroses in rats

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The effect of isoproterenol on myocardial metabolism in rats was studied using qualitative and quantitative histochemical techniques. The activity and location of 20 enzymes that play a role in the aerobic and anaerobic pathways of energy metabolism were qualitatively examined. The activity and location of some hydrolytic enzymes and the glycogen content were also qualitatively studied. For the quantitative study the activity of 10 enzymes was measured.

The isoproterenol injections induced necrosis with inflammatory infiltrates. The muscle fibres in the necrotic regions were characterized by defective aerobic energy metabolism and increased glycolytic capacity. There was a depletion of the glycogen reserves in the necrotic fibres. These fibres showed a markedly increased activity of enzymes belonging to the oxidative branch of the pentose phosphate pathway. The implication of this increase for the metabolism of the myocardial cells is discussed. The activity of acid phosphatase in the pathological muscle fibres was strongly increased. The inflammatory cells in the necrotic areas were characterized by preponderantly anaerobic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abri, O. &Hecht, A. (1981) The influence of long-term application of isoproterenol on the results of temporary ischemia of the heart muscle.Exp. Pathol. 20, 146–52.

    PubMed  Google Scholar 

  • Autor, A. P. (1982)Pathology of Oxygen. London-New York: Academic Press.

    Google Scholar 

  • Barka, M. D. &Anderson, P. J. (1963)Histochemistry, Theory, Practice and Bibliography. New York: Harper and Row.

    Google Scholar 

  • Barner, H. B., Jellinek, M. &Kaiser, G. C. (1970) Effects of isoproterenol infusion of myocardial structure and composition.Am. Heart J. 79, 237–43.

    PubMed  Google Scholar 

  • Bloom, S. &Davis, D. (1974)Myocardial Biology, München, Berlin, Wien: Verlag Urban und Schwarzenberg.

    Google Scholar 

  • Bodaness, R. S. (1982) The potential role of NADPH and cytoplasmic NADP-linked dehydrogenases in protection against singlet oxygen mediated cellular toxicity.Biochem. Biophys. Res. Commun. 108, 1709–15.

    PubMed  Google Scholar 

  • Bors, W., Michel, CL, Saran, M. &Lengfelder, E. (1978) The involvement of oxygen radicals during the autooxidation of adrenalin.Biochim. Biophys. Acta 540, 162–72.

    PubMed  Google Scholar 

  • Buckberg, G. D. &Ross, G. (1973) Effects of isoproterenol on coronary blood flow. Its distribution and myocardial performance.Cardiovasc.Res. 7, 429–37.

    PubMed  Google Scholar 

  • Burstone, M. S. (1962)Enzyme Histochemistry, New York: Academic Press.

    Google Scholar 

  • Busch, H. F. M., Jennekens, F. G. I. &Scholte, H. R. (1981)Mitochondria and Muscular Diseases. Beetsterwaag, The Netherlands: Mefar B. V.

    Google Scholar 

  • Chappel, C. I., Rona, G., Balasz, T. &Gaudry, R. (1959) Severe myocardial necrosis produced by isoproterenol in the rat.Arch. Int. Pharmacodyn. Ther. 122, 123–8.

    PubMed  Google Scholar 

  • Ciplea, A. G. &Bock, P. R. (1976a) Qualitative und quantitative histoenzymatische Studie and den durch Isoproterenol induzierten Myokardnekrosen bei Ratten.Arzneimittel-Forschung 26, 799–812.

    PubMed  Google Scholar 

  • Ciplea, A.G. &Bock, P. R. (1976b) Kardioprotektion durch perorale Anwendung des Calcium-Antagonisten Sensit. Verhütung isoproterenol-bedingter Myokardnekrosen bei Ratten.Arzneimittel-Forschung 26, 1819–26.

    PubMed  Google Scholar 

  • Ciplea, A. G., Metze, K., Grundmann, E., Roessner, A. &Hettwer, H. (1985) Microphotometric quantitation of enzyme activities in giant cell tumor of bone.Pathol Res. Pract. 179, 412–8.

    PubMed  Google Scholar 

  • Danielsson, H. &Tchen, T. T. (1968) Steroid metabolism. InMetabolic Pathways, Vol. 2. (edited byGreenberg, D. M.) pp. 116–98. London, New York: Academic Press.

    Google Scholar 

  • Davies, M. J. (1977) The pathology of myocardial ischemia.J. Clin. Pathol. 30, (suppl. 11), 45–52.

    PubMed  Google Scholar 

  • De Vries, G. P. &Meijer, A. E. F. H. (1976) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue section. 6.D-glucose-6-phosphate isomerase and phosphogluco-mutase.Histochemistry 50, 1–8.

    PubMed  Google Scholar 

  • De Vries, G. P., Tigges, A. J. &Meijer, A. E. F. H. (1980) The histochemical demonstration of glyceraldehyde phosphate dehydrogenase activity with a semipermeable membrane technique.Histochem. J. 12, 119–22.

    PubMed  Google Scholar 

  • Drummond, G. I., Duncan, L. &Hertzman, E. (1966) Effect of epinephrine on phosphorylaseb kinase in perfused rat hearts.J. biol. Chem. 241, 5899–903.

    PubMed  Google Scholar 

  • Elias, E. A. (1985) Metabolic studies as a diagnostic measure for cancer. 1. Adenocarcinomas of different organs, especially the human mamma.Cell. Molec. Biol. 31, 281–98.

    Google Scholar 

  • Elias, E. A., Elias, R. A., De Vries, G. P. &Meijer, A. E. F. H. (1982) Early and late changes in the metabolic pattern of the working myocardial fibres and Purkinje fibres of the human heart under ischaemic and inflammatory conditions; an enzyme histochemical study.Histochem. J. 14, 445–59.

    PubMed  Google Scholar 

  • Elias, E. A., Elias, R. A., Kooistra, A. M., Roukema, A. C., Blacquiere, J. F., Barrowclough, H. &Meijer, A. E. F. H. (1983) Fluctuations in the enzymatic activity of the human endometrium.Histochemistry 77, 159–70.

    PubMed  Google Scholar 

  • Elias, E. A. &Meijer, A. E. F. H. (1981) The increase in activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in skeletal muscles of rats after subcutaneous administration ofN, N 1-dimethy-para-phenylenediamine.Histochemistry 71, 543–58.

    PubMed  Google Scholar 

  • Ferrans, V. J., Hibbs, R. G., Black, W. C. &Weilbacher, D. G. (1964) Isoproterenol-induced myocardial necrosis A histochemical and electron microscopic study.Am. Heart J. 68, 71–90.

    PubMed  Google Scholar 

  • Fields, M. &Laufer, A. (1977) Lysosomal enzyme release in the isolated perfused heart of immunized rats.J. Molec. Cell. Cardiol. 9, 933–43.

    Google Scholar 

  • Fleckenstein, A., Pachinger, O., Leder, O., Hein, B. &Janke, J. (1972) Verhütung Isoproterenol-induzierter Myokardnekrosen durch Senkung des Plasma Calcium Spiegels mittels Calcitonin.Pflügers Arch. Ges. Physiol. 332, (suppl.) R40.

    Google Scholar 

  • Freeman, B. A. &Carpo, J. D. (1982) Biology of disease. Free redicals and tissue injury.Lab. Invest. 47, 412–26.

    PubMed  Google Scholar 

  • Glenner, G. G., Burtner, H. J. &Brown, G. W. (1957) The histochemical demonstration of monoamine oxidase activity by tetrazolium salts.J. Histochem. Cytochem. 5, 591–600.

    PubMed  Google Scholar 

  • Gopinath, C., Thuring, J. &Zayed, I. (1978) Isoprenaline-induced myocardial necrosis in dogs.Br. J. Exp. Pathol. 59, 148–57.

    PubMed  Google Scholar 

  • Green, D. E. &Allmann, D. W. (1968) Biosynthesis of fatty acids. InMetabolic Pathways, Vol. 2. (edited byGreenberg, D. M.) pp. 38–67. London, New York: Academic Press.

    Google Scholar 

  • Hack, M. H. &Helmy, F. M. (1967) Some correlative lipid and histochemical studies of experimental myocardial infarction in the dog.Acta Histochem. 27, 291–302.

    PubMed  Google Scholar 

  • Hammermeister, K. E., Yunis, A. A. &Krebs, E. G. (1965) Studies on phosphorylase activation in the heart.J. biol. Chem. 240, 986–91.

    PubMed  Google Scholar 

  • Hearse, D. J., Garlick, P. B., Humphrey, S. T. &Shillingford, J. P. (1978) The effect of drugs on enzyme release from the hypoxic myocardium.Eur. J. Cardiol. 7, 421–36.

    PubMed  Google Scholar 

  • Hettwer, H. (1984) The Ca2+-activated ATP-A in the tubuli seminiferi of rats.Cell. Molec. Biol. 30, 391–9.

    Google Scholar 

  • Horecker, B. L. (1968) Pentose phosphate pathway, uronic acid pathway, interconversion of sugars. InCarbohydrate Metabolism, Vol. 1 (edited byDickens, F., Whelan, W. J. &Randle, P. J.) pp. 137–67. London, New York: Academic Press.

    Google Scholar 

  • Jodalen, H., Lie, R. &Rotevatn, S. (1982) Effect of isoproterenol on lipid accumulation in myocardial cells.Res. Exp. Med. (Berlin) 181, 239–44.

    Google Scholar 

  • Judd, J. T. &Wexler, B. C. (1969) Myocardial connective tissue metabolism in response to injury: histological and chemical studies of mucopolysaccharide and collagen in rat hearts after isoproterenol induced infarction.Circ. Res. 25, 201–14.

    PubMed  Google Scholar 

  • Kahn, D. S., Rona, G. &Chappel, C. I. (1969) Isoproterenol-induced cardiac necrosis.Ann. N.Y. Acad. Sci. 156, 285–93.

    PubMed  Google Scholar 

  • Kapuscinski, M. &Williams, J. F. (1981) There is an active and extensive pentose phosphate pathway of glucose metabolism in rat hearts.J. Molec. Cell. Cardiol. 13, 4.

    Google Scholar 

  • Kief, H. &Bähr, H. (1975) Zur experimentellen Pathologie der Ischämie an Herzen.J. Angiologisches Symposium. pp. 31–9, Stuttgart, New York: Schattauer-Verlag.

    Google Scholar 

  • Krause, E.-G. &England, P. J. (1982) Loss of the cyclic AMP accumulation induced by isoproterenol ischaemie in the isolated rat heart.J. Molec. Cell. Cardiol. 14, 611–3.

    Google Scholar 

  • Krause, E.-G. &England, P. J. (1984) Effect of phosphorylation on protein phosphorylation in myocardial ischaemia.Gen. Physiol. Biophys. 3, 193–9.

    PubMed  Google Scholar 

  • Lange, P. W. &Engström, A. (1954) Determination of thickness of microscopic objects.Lab. Invest. 3, 116–31.

    PubMed  Google Scholar 

  • Lojda, Z., Gossrau, R. &Schiebler, T. H. (1979)Enzyme Histochemistry Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Loschen, G. &Flohe, L. (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria.FEBS Lett. 18, 261–4.

    PubMed  Google Scholar 

  • Meerson, F. Z., Kagan, V. E., Kozlov, Y. P., Belkina, L. M. &Arkhipenko, Y. V. (1982) The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart.Basic Rec. Cardiol. 77, 465–85.

    Google Scholar 

  • Meijer, A. E. F. H. (1970) Histochemical method for the demonstration of myosin adenosine triphosphatase in muscle tissue.Histochemie 22, 51–8.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. (1972) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. I. Acid phosphatase.Histochemie 30, 31–9.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. (1973) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. III. Lactate dehydrogenase.Histochemie 35, 165–72.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. (1980) Semipermeable membrane techniques in quantitative enzyme histochemistry. InTrends in Enzyme Histochemistry and Cytochemistry. Ciba Foundation Symposium73, pp. 103–20. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Meijer, A. E. F. H., Benson, D. &Scholte, H. R. (1977b) The influence of freezing and freeze-drying of tissue specimens on enzyme activity.Histochemistry 51, 297–303.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. &De Vries, G. P. (1974) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. IV. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (decarboxylating).Histochemistry 40, 349–59.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. &De Vries, G. P. (1975) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. V. Isocitrate: NADP+ oxidoreductase (decarboxylating) and malate:NADP+ oxidoreductase (decarboxylating).Histochemistry 43, 225–36.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. &Elias, E. A. (1977) Die Aktivität der Glucose-6-phosphat-Dehydrogenase und 6-phosphogluconat-Dehydrogenase in Skelettmuskelgewebe von Patienten mit Muskelkrankheiten.Acta Histochem. Suppl.18, 169–75.

    Google Scholar 

  • Meijer, A. E. F. H. &Elias, E. A. (1984a) The inhibitory effect of actinomycin D and cycloheximide on the increase in activity of glucose-6-phosphate dehydrogenase in experimentally induced diseased skeletal muscles.Histochem. J. 16, 971–82.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. &Elias, E. A. (1984b) Die Bedeutung der Kapazitätszunahme des Pentosephosphatzyklus in malignen Tumoren für den Energiestoffwechsel.Acta Histochem. Suppl.29, 141–8.

    Google Scholar 

  • Meijer, A. E. F. H. &Elias, E. A. (1985) Kapazitätszunahme des Pentosephosphatzyklus in pathologisch veränderten Skelettmuskelfasern.Wiss. Z. Friedrich-Schiller-Universität Jena 34, 396–405.

    Google Scholar 

  • Meijer, A. E. F. H., Elias, E. A. &Vloedman, A. H. T. (1977a) The value of enzyme histochemical techniques in classifying fibre types of human skeletal muscle. 3. Human skeletal muscles with inherited or acquired disease of the neuromuscular system.Histochemie 53, 97–105.

    Google Scholar 

  • Meijer, A. E. F. H. &Stegehuis, F. (1980) Histochemical technique for the demonstration of phosphofructokinase activity in heart and skeletal muscles.Histochemistry 66, 75–81.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. &Vloedman, A. H. T. (1973) Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. II. Non-specific esterase and β-glucuronidase.Histochemie 34, 127–34.

    PubMed  Google Scholar 

  • Meijer, A. E. F. H. &Vloedman, A. H. T. (1980) The histochemical characterization of the coupling state of skeletal muscle mitochondria.Histochemistry 69, 217–32.

    PubMed  Google Scholar 

  • Mistra, H. P. &Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. biol. Chem. 247, 3170–5.

    PubMed  Google Scholar 

  • Nachlas, M., Tsou, K. C., De Souza, E., Cheng, C.-S. &Seligman, A. M. (1957) The cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted dinitrazole.J. Histochem. Cytochem. 5, 420–36.

    PubMed  Google Scholar 

  • Nohl, H. &Hegner, D. (1978) Do mitochondria produce oxygen radicalsin vivo? Eur. J. Biochem. 82, 563–7.

    PubMed  Google Scholar 

  • Rona, G., Chappel, C. I., Balasz, T. &Gaudry, R. (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol on the rats.Arch. Pathol. 67, 443–55.

    Google Scholar 

  • Rona, G., Chappel, C. I. &Kahn, D. S. (1963) The significance of factors modifying the development of isoproterenol-induced myocardial necrosis.Am. Heart J. 66, 389–95.

    PubMed  Google Scholar 

  • Rowe, T. G., Manson, N. H., Caplan, M. &Hess, M. L. (1983) Hydrogen peroxide and hydroxyl radical medication of activated leucocyte depression of cardial sarcoplasmic reticulum.Circ. Res. 33, 584–91.

    Google Scholar 

  • Saroff, J. &Wexler, B. C. (1970) Isoproterenol-induced myocardial infarction in rats: distribution of corticosterone.Circ. Res. 27, 1101–9.

    PubMed  Google Scholar 

  • Seidler, E. (1983) Zum histochemischen Nachweis von Gewebsalterationen durch Tetrazoliumsalze unterschieldlicher Nitrosencitivität.Acta Histochem. 73, 219–25.

    PubMed  Google Scholar 

  • Shnitka, T. &Nachlas, M. M. (1963) Histochemical alteration in ischemic heart muscle and early myocardial infarction.Am. J. Pathol. 5, 507–25.

    Google Scholar 

  • Sharma, R. V., Gupta, R. C., Ramanadham, M., Venema, R. C. &Bhalla, C. (1983) Reduced cAMP levels and glycogen phosphorylase activation in isoproterenol perfused SHR myocardium.Basic Res. Cardiol. 78, 695–705.

    PubMed  Google Scholar 

  • Shlaver, M., Kane, P. F., Wiggins, V. Y. &Kirsh, M. M. (1982) Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardiac ischaemic injury.Circulation 66, 185–92.

    Google Scholar 

  • Stanton, H. C., Brenner, G. &Mayfield, E. D. (1969) Studies of isoproterenol-induced cardiomegaly in rats.Am. Heart J. 77, 72–80.

    PubMed  Google Scholar 

  • Stewart, J. R., Blackwell, W. H., Crute, S. L., Loughlin, V., Hess, M. L. &Greenfield, L. J. (1982) Prevention of myocardial ischemia-reperfusion injury with oxygen free radical scavengers.Surg. Forum. 33, 317–21.

    Google Scholar 

  • Stull, J. T. (1980) Phosphorylation of contractive proteins in relation to muscle function.Adv. Cycl. Nucleotide Res. 13, 39–94.

    Google Scholar 

  • Tajuddin, M., Ahmad, M. &Tariq, M. (1975) Effect of conditioning on myocardial metabolism after myocardial infarction. InRecent Advances in Studies on Cardiac Structure and Metabolism, Vol. 10 pp. 561–68. Baltimore: University Park Press.

    Google Scholar 

  • Titus, E. O. (1983) A molecular biologic approach to cardiac toxicology.Adv. Exp. Med. Biol. 161, 509–18.

    PubMed  Google Scholar 

  • Todd, G. L., Pieper, G. M., Clayton, F. C. &Eliot, R. S. (1979) Heterogeneity in distribution of cardiac glycogen following isoproterenol infusions in the dog.Histochem. J. 11, 425–34.

    PubMed  Google Scholar 

  • Van Den Hoven, R., Wensing, Th., Breukink, H. J. &Meijer, A. E. F. H. (1987) Enzyme histochemistry in exertional rhabdomyolysis. InEquine Exercise Physiology (edited byGillespie, J. R. &Robinson, N. E.) pp. 796–810. Davis, California: ICEEP publications.

    Google Scholar 

  • Wexler, B. C. (1978) Myocardial infarction in young and old male rats; pathophysiological changes.Am. Heart J. 96, 70–80.

    PubMed  Google Scholar 

  • Wildenthal, K. (1975) Lysosomes and lysosomal enzymes in the heart. InLysosomes in Biology and Pathology, Vol. 4. (edited byDingle J. T. &Dean, R. T.) pp. 167–70. Amsterdam, Oxford: North Holland.

    Google Scholar 

  • Williams, B. J. &Mayer, S. E. (1966) Hormonal effects on glycogen metabolism in the rat heartin situ.Molec. Pharmacol. 2, 454–64.

    Google Scholar 

  • Wood, T. (1985)The Pentose Phosphate Pathway, Orlando: Academic Press.

    Google Scholar 

  • Wood, W. G., Lindenmayer, G. E. &Schwartz, A. (1971) Myocardial synthesis of ribonucleic acid. 1. Stimulation by isoproterenol.J. Molec. Cell. Cardiol. 3, 127–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. H. G. Goslar in honour of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijer, A.E.F.H., Hettwer, H. & Ciplea, A.G. An enzyme histochemical study of isoproterenol-induced myocardial necroses in rats. Histochem J 20, 697–707 (1988). https://doi.org/10.1007/BF01002750

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002750

Keywords

Navigation