The Histochemical Journal

, Volume 21, Issue 1, pp 15–22 | Cite as

Multivariate classification of histochemically stained human skeletal muscle fibres by the SIMCA method

  • Erik Bye
  • Ole Grønnerød
  • Nils B. Vogt


The SIMCA (soft independent modelling of class analogy) method of pattern recognition has been used to classify four muscle fibre types: I, IIA, IIB and IIC. The samples were histochemically stained human skeletal sections from biopsy material. Disjoint (separate) class modelling gave information about variables, i.e., the combinations of alkaline, acidic and Ca2+-containing preincubation procedures with appropriate discrimination power, and showed satisfactory separation of the classes (fibre types). Two serial stained muscle sections represent a minimum for a proper classification of the four fibre groups. A comparison of biopsy samples from two different persons showed significant variation in the data structure between similar fibre types, probably caused by intermuscle variations. It is suggested that the introduction of computer-assisted classification by the application of such multivariate analytical techniques both facilitates the classification of muscle fibres and improves the precision and reliability of fibre typing.


Muscle Fibre Fibre Type Human Skeletal Muscle Skeletal Muscle Fibre Class Analogy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albano, C., Dunn, W. J., Edlund, U., Johansson, E., Norden, B., Sjöström, M. andWold, S. (1978) Four levels of pattern recognition.Anal. Chim. Acta Comput. Tech. Optim. 103, 429–43.Google Scholar
  2. Brooke, M. H. &Kaiser, K. K. (1969) Some comments on the histochemical characterisation of muscle adenosine triphosphatase.J. Histochem. Cytochem. 17, 431–2.Google Scholar
  3. Close, R. I. (1972) Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.Google Scholar
  4. Coomans, D., Massart, D. L., Brockert, I. &Tassin, A. (1981) Potential methods in pattern recognition. Part 1. Classification aspects of the supervised method ALLOC.Anal. Chim. Acta Comput. Tech. Optim. 133, 215–24.Google Scholar
  5. Dubowitz, V. &Brooke, M. H. (1973)Muscle Biopsy: A Modern Approach. Vol. 2,Major Problems in Neurology. Toronto: W. B. Saunders.Google Scholar
  6. Dunn, W. J. &Wold, S. (1980) Relationsships between chemical structure and biological activity modelled by SIMCA pattern recognition.Bioorg. Chem. 9, 505–23.Google Scholar
  7. Dunn, W. J., Wold, S. &Stalling, D. L. (1985)Simple Modelling by Chemical Analogy Pattern Recognition. Environmental Applications of Chemometrics (edited byBrunn, J. J. andRobinson, P. E.)Amer. Chem. Soc. Symp. Ser. 292, 243–9.Google Scholar
  8. Grønnerød, O. & Vøllestad, N. K. (1985) Quantitative analysis of histochemically stained sections of mammalian muscle.J. Physiol. (Lond.) 371, 15P.Google Scholar
  9. Guth, L. &Samaha, F. J. (1970) Procedure for the histochemical demonstration of actomyosin ATPase.Exp. Neurol. 28, 365–7.Google Scholar
  10. Hayashi, M. &Freiman, D. G. (1966) An improved method of fixation for formalin-sensitive enzymes with special reference to myosin adenosine triphosphatase.J. Histochem. Cytochem. 14, 577–81.Google Scholar
  11. Hellberg, S., Wold, S., Dunn, W. J., Gasteiger, J. &Hutchings, M. G. (1985) The anesthetic activity and toxicity of halogenated ethyl methyl ethers, a multivariate QSAR modelled by PLS.Quant. Struct. Act. Relat. 4, 1–11.Google Scholar
  12. Jellum, E., Bjørnson, I., Nesbakken, R., Johansson, E. &Wold, S. (1981) Classification of human cancer cells by means of capillary gas chromatography and pattern recognition analysis.J. Chromatogrr. 217, 231–7.Google Scholar
  13. Magic (1986) A pattern recognition program for the IBM computer. (Vers. 1.0 beta) Pattern Recognition Systems, Bergen, Norway.Google Scholar
  14. Sharaf, M. A., Illman, D. L. &Kowalski, B. R. (1986)Chemometrics. Chemical Analysis. 82. New York: John Wiley & Sons.Google Scholar
  15. Simca 3b (1983) Sepanova AB, Enskede, Sweden.Google Scholar
  16. Spurway, N. C. (1981) Objective characterization of cells in terms of microscopical parameters: an example from muscle histochemistry.Histochem. J. 13, 269–317.Google Scholar
  17. Vøllestad, N. K., Vaage, O. &Hermansen, L. (1984) Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man.Acta Physiol. Scand. 122, 433–41.Google Scholar
  18. Vogt, N. B. &Knutsen, H. (1985) SIMCA pattern recognition classification of five infauna taxonomic groups using non-polar compounds analyzed by high resolution gas chromatography.Mar. Ecol. Progr. Ser. 26, 145–56.Google Scholar
  19. Vaage, O., Grønnerød, O., Dahl, H. &Hermansen, I. (1980) Subgrouping of skeletal muscle fibres in man.Acta Physiol Scand. 108, 41A.Google Scholar
  20. Wold, H. (1982)Systems under Indirect Observation Vol. 2 (edited byJøreskog, K. G. &Wold, H.) pp. 1–54 Amsterdam: North-Holland.Google Scholar
  21. Wold, S. (1976) Pattern recognition by means of disjoint principal components models.J. Patt. Recogn. 8, 127–39.Google Scholar
  22. Wold, S. (1978) Cross validatory estimation of the number of components in factor and principal component models.Technometrics 20, 397–406.Google Scholar
  23. Wold, S., Albano, C., Blomquist, G., Coomans, D., Dunn, W. J., Edlund, U., Eliasson, B., Hellberg, S., Johansson, E., Norden, B., Sjöström, M., Sjöström, B. & Wold, H. (1981) Pattern recognition by means of disjoint principal component models (SIMCA). InProc. Symp. Anv. Stat. NEUCC, RECAU, and RECKU, Copenhagen (edited byHöskuldson, A. et al.) pp. 475–87.Google Scholar
  24. Wold, S., Albano, C., Dunn, W. J., Edlund, U., Esbensen, K., Geladi, P., Hellberg, S., Johansson, E., Lindberg, W. &Sjöström, M. (1984) Multivariate data analysis in chemistry.Proc. NATO Adv. Study Inst. On chemometrics, Cozena, Italy, Sept. 1983 (edited byKowalski, B.), pp. 17–97. Dordrecht: Reidel.Google Scholar
  25. Wold, S., Albano, C., Dunn, W. J., Esbensen, K., Hellberg, S., Johansson, E. &Sjöström, M. (1983) Pattern recognition: finding and using regularities in multivariate data. InFood Research and Data Analysis (Proc. IUFOST Symp., Oslo, Norway, Sept. 1982) (edited byMartens, H. &Russwurm Jr., H.), pp. 147–88. London and New York: Applied Science Publishers.Google Scholar
  26. Wold, S., Dunn, W. J. &Hellberg, S. (1985) Toxicity modelling and prediction with pattern recognition.Environ. Heal. Perspect. 61, 257–2.Google Scholar
  27. Wold, S. & Sjöström, M. (1977) SIMCA, a method for analyzing chemical data in terms of similarity and analogy. InChemometrics, Theory and Applications (edited byKowalski, B.)Amer. Chem. Soc. Symp. Ser. 52, 243–82.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Erik Bye
    • 1
  • Ole Grønnerød
    • 2
  • Nils B. Vogt
    • 3
  1. 1.Department of Occupational HygieneInstitute of Occupational HealthOslo 1Norway
  2. 2.Department of PhysiologyInstitute of Occupational HealthOslo 1Norway
  3. 3.Department of Industrial ChemistryCenter for Industrial ResearchOslo 3Norway

Personalised recommendations