The Histochemical Journal

, Volume 20, Issue 8, pp 455–463 | Cite as

Quantitative enzyme histochemistry of rat foetal brain and trigeminal ganglion

  • P. Chieco
  • P. Hrelia
  • G. Lisignoli
  • G. Cantelli-forti


The increasing concern and the efforts in determining neurological effects in offsprings resulting from maternal exposure to xenobiotics are faced with several difficulties in monitoring damage to the central nervous system. In this paper, the efficiency of several enzyme histochemical reactions for analysing the forebrain and the trigeminal ganglia of rat foetuses are reported. Brains of 20-day-old Sprague-Dawley rat foetuses were frozen and analysed for 18 enzymes that had previously been used to monitor initial injury caused by toxic compounds in liver and other organs. Eight enzymes appeared suitable as histochemical markers for the functional integrity of different areas in brain and ganglia of rats exposed to xenobiotics. They were lactate, malate, glycerophosphate (NAD-linked), succinate, aldehyde and glucose 6-phosphate dehydrogenases, α-glycerophosphate-menadione oxidoreductase and cytochromec oxidase. The activities of the enzymes were determined by microphotometry and the arrangement of absorbances of the enzyme final reaction products into appropriate analytical tables is proposed as an efficient procedure for data analysis.


Succinate Cytochromec Oxidase Trigeminal Ganglion Foetal Brain Neurological Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





aldehyde dehydrogenase


alkaline phosphatase


adenosine monophosphatase


Mg2+ dependent adenosine triphosphatase


cytochromec oxidase


glyceraldehyde phosphate dehydrogenase


glutamate dehydrogenase


glycerophosphate: NAD oxidoreductase


glycerophosphate:menadione oxidoreductase




glucose-6-phosphate dehydrogenase


lactate dehydrogenase


malate dehydrogenase


monoamine oxidase


tetrazolium oxidoreductase


succinate dehydrogenase


6-phosphogluconate dehydrogenase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angermuller, S. &Fahimi, H. D. (1981) Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3-3′-diaminobenzidine.Histochemistry 71, 33–44.Google Scholar
  2. Anthony, A., Colurso, G. J., Bocan, T. M. A. &Doebler, J. A. (1984) Interferometric analysis of intrasection and intersection thickness variability associated with cryostat microtomy.Histochem. J. 16, 61–70.Google Scholar
  3. Bannasch, P., Benner, U., Hacjer, H. J., Klimex, F., Mayer, D., Moore, M. &Zerban, H. (1981) Cytochemical and biochemical microanalysis of carcinogenesis.Histochem J. 13, 799–820.Google Scholar
  4. Baumann, N. &Hauw, J. J. (1979) Donnees recents sur les cellules gliales du systeme nerveux central.Path. Biol. 27, 169–77.Google Scholar
  5. Bondy, S. C. (1985) Especial considerations for neurotoxicological research.CRC Crit. Rev. Toxicol. 14, 381–402.Google Scholar
  6. Boor, P. J., Nelson, T. J. &Chieco, P. (1980) Allylamine cardiotoxicity. II Histopathology and histochemistry.Am. J. Pathol. 100, 739–64.Google Scholar
  7. Booth, R. F. G., Patel, T. B. &Clark, J. B. (1980) The development of enzymes of energy metabolism in the brain of a precocial (Guinea Pig) and non-precocial (rat) species.J. Neurochem. 34, 17–25.Google Scholar
  8. Butcher, R. G. &Chayen, J. (1966) Quantitative studies on the alkaline phosphatase reaction.J. Roy. Micr. Soc. 85, 111–17.Google Scholar
  9. Chieco, P. &Boor, P. J. (1984) Quantitative histochemistry in pathology and toxicology. An evaluation of the original two-wavelength method of Ornstein.Lab. Invest. 50, 355–62.Google Scholar
  10. Chieco, P., Moslen, M. T. &Reynolds, E. S. (1982) Histochemical evidence that plasma and mitochondrial membranes are primary foci of hepatocellular injury caused by 1,1-dichloroethylene.Lab. Invest. 46, 413–21.Google Scholar
  11. Chieco, P., Normanni, P. &Boor, P. J. (1984) Improvement in soluble dehydrogenase histochemistry by nitroblue tetrazolium preuptake in sections: a qualitative and quantitative study.Stain Technol. 59, 201–11.Google Scholar
  12. Chieco, P., Normanni, P. &Moslen, M. T. (1988) Localization of high benzaldehyde dehydrogenase activity in rat upper gastrointestinal tract mucosa: a quantitative histochemical study.J. Histochem. Cytochem. 36, 345–52.Google Scholar
  13. Dayan, A. D. (1979) A morphologist's approach to detection and study of neurotoxicity.Pharmac. Ther. 5, 571–7.Google Scholar
  14. Diemer, N. H. (1982) Quantitative morphological studies of neuropathological changes. Part 1.CRC Crit. Rev. Toxicol. 7, 215–63.Google Scholar
  15. Elias, E. A. &Meijer, A. E. F. H. (1981) The increase in activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in skeletal muscles of rats after subcutaneous administration ofN,N′-dimethyl-para-phenylenediamine.Histochemistry 71, 543–58.Google Scholar
  16. Friede, R. L. (1966)Topographic Brain Chemistry. London: Academic Press.Google Scholar
  17. Glenner, G. G. (1965) Enzyme histochemistry. InNeurohistochemistry (edited byAdams, C. W. M.), pp. 109–60. Amsterdam: Elsevier.Google Scholar
  18. Glenner, G. G., Burtner, H. J. &Brown, G. W. (1957) The histochemical demonstration of monoamine oxidase activity by tetrazolium salts.J. Histochem. Cytochem. 5, 591–600.Google Scholar
  19. Hardonk, M. J., Haarsma, T. J., Dijkhuis, F. G. J., Poel, M. &Koudstaal, J. (1977) Influence of fixation and buffer treatment on the release of enzymes from the plasma membrane.Histochemistry 54, 57–66.Google Scholar
  20. Herken, R. (1977) Application of autoradiography in teratology. InMethods in Prenatal Toxicology (edited byNeubert, D., Merker, H. J. andKwasigroch, T. E.), pp. 322–327. Boston: PSG Publishing Co.Google Scholar
  21. Hutchings, D. E. (1983) Behavioral teratology: a new frontier in neurobehavioral research. InTeratogenesis and Reproductive Toxicology (edited byJohnson, E. M. andKochhar, D. M.), pp. 207–35. Berlin: Springer Verlag.Google Scholar
  22. Karnowsky, M. J. &Roots, L. (1964) A ‘direct-coloring’ thiocoline method for cholinesterase.J. Histochem. Cytochem. 12, 219–21.Google Scholar
  23. Kluver, H. &Barrera, E. (1953) Method for combined staining of cells and fibres in nervous system.J. Neuropathol. Exp. Neurol. 12, 400–5.Google Scholar
  24. Masuzawa, T. &Sato, F. (1983) The enzyme histochemistry of the choroid plexus.Brain 105, 55–99.Google Scholar
  25. Mcilwain, H. (1959)Biochemistry of the Central Nervous System, p. 186. London: J. & A. Churchill.Google Scholar
  26. Miller, M. W. (1986) Effects of alcohol on the generation and migration of cerebral cortical neurons.Science 233, 1308–11.Google Scholar
  27. Mitchell, C. L. (1978) Target organ toxicity: nervous system.Environm. Hlth Persp. 26, 3–4.Google Scholar
  28. NCI (1979) National Cancer Institute Monograph no. 51:Perinatal Carcinogenesis. Bethesda: DHEW Publication No. (NIH) 79-1633.Google Scholar
  29. Norton, S. (1978) Is behavior or morphology a more sensitive indicator of central nervous system toxicity?Environm. Hlth Persp. 26, 21–7.Google Scholar
  30. Ornstein, L. (1952) The distributional error in microspectrophotometry.Lab. Invest. 1, 250–65.Google Scholar
  31. Palou, A., Remesar, X., Arola, L. L. &Alemany, M. (1983) Body and organ size and composition during late foetal and postnatal development of rat.Comp. Biochem. Physiol. 75A, 597–601.Google Scholar
  32. Raap, A. K. &van Dujin, P. (1983) Studies on the phenazine methosulfate-tetrazolium capture reaction in NAD(P)-dependent dehydrogenase cytochemistry. II. A novel hypothesis for the mode of action of PMS and a study of the properties of reduced PMS.Histochem. J. 15, 881–93.Google Scholar
  33. Seynolds, E. S. &Moslen, M. T. (1974) Chemical modulation of early carbon tetrachloride liver injury.Toxicol. Appl. Pharmacol. 29, 377–88.Google Scholar
  34. Schaeppi, U. &Hess, R. (1984) What can specific behavioural testing procedures contribute to the assessment of neurotoxicity in laboratory animals?Agents Actions 14, 131–8.Google Scholar
  35. Stoward, P. I. (1980) Criteria for validation of quantitative histochemical enzyme techniques. InCiba Foundation Symposium No. 73: Trends in Enzyme Histochemistry and Cytochemistry, pp. 11–27. Amsterdam: Excerpta Medica.Google Scholar
  36. Stoward, P. J. (1981) The past, present, and future of quantitative histochemistry. InHistochemistry: The Widening Horizons (edited byStoward, P. J. andPolak, J. M.), pp. 263–80. Chichester: John Wiley.Google Scholar
  37. Teutsch, F. (1978) Improved method for histochemical demonstration of glucose-6-phosphatase activity.Histochemistry 57, 107–17.Google Scholar
  38. van Noordes, C. J. F., Kooi, A., Vogels, I. M. C. &Frederiks, W. M. (1985) On the nature of the ‘nothing dehydrogenase’ reaction.Histochem. J. 17, 1111–18.Google Scholar
  39. Vorbrodt, A. W., Lossinsky, A. S. &Wisniewski, H. M. (1983) Enzyme cytochemistry of blood-brain barrier (BBB) disturbances.Acta Neuropathol. (Berl.) Suppl. VIII, 43–57.Google Scholar
  40. Wechsler, W., Kleihues, P., Matsumoto, S., Zulch, K. J., Ivanokovic, S., Preussman, R. &Druckrey, H. (1969) Pathology of experimental neurogenic tumors chemically induced during prenatal and postnatal life.Ann. N. Y. Acad. Sci. 159, 360–408.Google Scholar
  41. Zimmermann, H. &Pearse, A. G. E. (1959) Limitations in the histochemical demonstration of pyridine nucleotide-linked dehydrogenases ‘nothing dehydrogenase’.J. Histochem. Cytochem. 7, 271–5.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • P. Chieco
    • 1
  • P. Hrelia
    • 2
  • G. Lisignoli
    • 1
  • G. Cantelli-forti
    • 2
  1. 1.Institute of Oncology'F. Addarii'BologneItaly
  2. 2.Institute of PharmacologyUniversity of BolognaItaly

Personalised recommendations