Abstract
An analytical model to predict heat transfer rates to an incompressible fluid in turbulent flow, with fully developed velocity profile, between a heated plate and a parallel, insulated plate is developed. The model employs van Driest's mixing length expression near the wall, a constant eddy diffusivitiy in the core and a constant turbulent Prandtl number. An approximate solution obtained by employing Rayleigh-Ritz method is shown to compare well with the ‘exact’ solution obtained by numerical integration of the differential equations. The results are compared with the available experimental data and analytical solutions.
Zusammenfassung
Es wird ein analytisches Modell zur Berechnung der Wärmeübertragung an ein inkompressibles Fluid in turbulenter Strömung mit voll ausgebildetem Geschwindigkeitsprofil zwischen einer beheizten Platte und einer dazu parallelen isolierten Platte angegeben. Das Modell verwendet van Driest's Ausdruck für die wandnahe Mischungslänge, eine konstante Wirbeldiffusivität im Kern und eine konstante turbulente PrandtlZahl. Eine Näherungslösung nach der Rayleigh-Ritz-Methode läßt sich gut mit der “exakten” Lösung vergleichen, die durch numerische Integration der Differentialgleichungen erhalten wurde. Die Ergebnisse werden mit verfügbaren Versuchswerten und analytischen Lösungen verglichen.
This is a preview of subscription content, access via your institution.
Abbreviations
- A+ :
-
dimensionless constant in van Driest formula
- a+ :
-
dimensionless distance from the wall after which the eddy diffusivity of momentum is constant
- b:
-
half-gap of passage
- b+ :
-
dimensionless half-gap=bu*/ν
- Cf :
-
skin friction coefficient
- Cp :
-
constant pressure specific heat
- d:
-
hydraulic mean diameter defined as 4xarea/perimeter=4b
- h:
-
convective heat transfer coefficient
- K+ :
-
dimensionless constant in van Driest formula
- k:
-
fluid thermal conductivity
- m:
-
mass flow rate of fluid
- Nu:
-
Nusselt number hd/k
- P:
-
pressure
- Pr:
-
Prandtl number=ν/α
- Prt :
-
turbulent Prandtl number=ɛm/ɛν
- qw :
-
heat flux at wall
- Re:
-
Reynolds number=vmd/ν
- T:
-
Temperature
- u+ :
-
dimensionless velocity=Vx/u*
- u* :
-
friction velocity=\(\sqrt {^\tau _w /^\rho } \)
- Vx :
-
axial velocity
- x:
-
axial distance from the entrance
- x+ :
-
dimensionless distance=x/d
- y:
-
distance from the heated wall
- y+ :
-
dimensionless distance=yu*/ν
- α :
-
thermal molecular diffusivity
- γ:
-
function equal to (ɛH+α)/ν
- δ:
-
boundary layer thickness
- ɛH :
-
eddy diffusivity of heat
- ɛm :
-
eddy diffusivity of momentum
- ɛm0 :
-
uniform eddy diffusivity of momentum in the core
- θ:
-
dimensionless temperature
- T-Ti/qwd/k:
-
uniform heat flux
- T-Tw/Ti-Tw :
-
uniform temperature
- ν:
-
fluid kinematic viscosity
- ρ:
-
fluid density
- τ:
-
fluid shearing stress
- Φ:
-
bulk mean temperature—fully developed region
- γ:
-
fully developed transverse temperature profile
- 1:
-
fully developed
- 2:
-
in the entrance region
- i:
-
at the inlet
- m:
-
bulk mean value
- w:
-
at the heated wall
References
Hatton, A.P.; Quarmby, A.: The Effect of Axially Varying and Unsymmetrical Boundary Conditions on Heat Transfer with Turbulent Flow-Between Parallel Plates. Int. J. Heat Mass Transfer 6 (1963) 906
Sakakibara, M.; Endo, K.: Analysis of Heat Transfer for Turbulent Flow Between Parallel Plates. Int. Chem. Engrg. 16 (1976) 728
Shibani, A.A.; Ozisik, M.N.: A Solution to Heat Transfer in Turbulent Flow Between Parallel Plates. Int. J. Heat Mass Transfer 20 (1977) 565
Leckner, B.: Heat Transfer in the Entrance Region with Fully Developed Turbulent Flow Between Parallel Plates. Int. J. Heat Mass Tran. 15 (1972) 35
Stephenson, P.L.: A theoretical Study of Heat Transfer in Two-Dimensional Turbulent Flow in a Circular Pipe and Between Parallel and Diverging plates. Int. J. Heat Mass Transfer 19 (1976) 413
Emery, A.F.; Gessner, F.B.: The Numerical Prediction of Turbulent Flow and Heat Transfer in the Entrance Region of a Parallel Plate Duct. J. Heat Transfer, ASME Trans. Series C 98 (1976) 594
Van Driest, E.R.: On Turbulent Flow Near a Wall. J. Aero, Sc. 23 (1956) 1007–1/11
Cebeci, T.; Smith, A.M.: Analysis of Turbulent Boundary Layers. Academic Press, N.Y. 1974
Klebanoff, P.S.: Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. NACA TN 3178 (1954)
Kopal, Z.: Numerical Analysis. John Wiley & Sons 1961
Richardson, L.F.: Phil. Trans. Roy. Soc., Vol. A (1927) p. 210
Barrow, H.: An Analytical and Experimental Study of Turbulent Flow Between Two Smooth Parallel Walls with Unequal Heat Fluxes. Int. J. Heat Mass Transfer 5 (1962) 469
Hatton, A.P.; Quarmby, A.; Grundy, I.: Further Calculations in the Heat Transfer with Turbulent Flow Between Parallel Plates. Int. J. Heat Mass Transfer 7 (1964) 817
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Diaz, L.A., Suryanarayana, N.V. Application of Rayleigh-Ritz method to forced convection turbulent heat transfer. Wärme- und Stoffübertragung 15, 67–77 (1981). https://doi.org/10.1007/BF01002404
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01002404
Keywords
- Heat Transfer
- Prandtl Number
- Heat Transfer Rate
- Incompressible Fluid
- Forced Convection