Skip to main content

Application of Rayleigh-Ritz method to forced convection turbulent heat transfer

Anwendung der Rayleigh-Ritz-Methode auf die Wärmeübertragung bei erzwungener turbulenter Strömung

Abstract

An analytical model to predict heat transfer rates to an incompressible fluid in turbulent flow, with fully developed velocity profile, between a heated plate and a parallel, insulated plate is developed. The model employs van Driest's mixing length expression near the wall, a constant eddy diffusivitiy in the core and a constant turbulent Prandtl number. An approximate solution obtained by employing Rayleigh-Ritz method is shown to compare well with the ‘exact’ solution obtained by numerical integration of the differential equations. The results are compared with the available experimental data and analytical solutions.

Zusammenfassung

Es wird ein analytisches Modell zur Berechnung der Wärmeübertragung an ein inkompressibles Fluid in turbulenter Strömung mit voll ausgebildetem Geschwindigkeitsprofil zwischen einer beheizten Platte und einer dazu parallelen isolierten Platte angegeben. Das Modell verwendet van Driest's Ausdruck für die wandnahe Mischungslänge, eine konstante Wirbeldiffusivität im Kern und eine konstante turbulente PrandtlZahl. Eine Näherungslösung nach der Rayleigh-Ritz-Methode läßt sich gut mit der “exakten” Lösung vergleichen, die durch numerische Integration der Differentialgleichungen erhalten wurde. Die Ergebnisse werden mit verfügbaren Versuchswerten und analytischen Lösungen verglichen.

This is a preview of subscription content, access via your institution.

Abbreviations

A+ :

dimensionless constant in van Driest formula

a+ :

dimensionless distance from the wall after which the eddy diffusivity of momentum is constant

b:

half-gap of passage

b+ :

dimensionless half-gap=bu*

Cf :

skin friction coefficient

Cp :

constant pressure specific heat

d:

hydraulic mean diameter defined as 4xarea/perimeter=4b

h:

convective heat transfer coefficient

K+ :

dimensionless constant in van Driest formula

k:

fluid thermal conductivity

m:

mass flow rate of fluid

Nu:

Nusselt number hd/k

P:

pressure

Pr:

Prandtl number=ν/α

Prt :

turbulent Prandtl number=ɛmν

qw :

heat flux at wall

Re:

Reynolds number=vmd/ν

T:

Temperature

u+ :

dimensionless velocity=Vx/u*

u* :

friction velocity=\(\sqrt {^\tau _w /^\rho } \)

Vx :

axial velocity

x:

axial distance from the entrance

x+ :

dimensionless distance=x/d

y:

distance from the heated wall

y+ :

dimensionless distance=yu*

α :

thermal molecular diffusivity

γ:

function equal to (ɛH+α)/ν

δ:

boundary layer thickness

ɛH :

eddy diffusivity of heat

ɛm :

eddy diffusivity of momentum

ɛm0 :

uniform eddy diffusivity of momentum in the core

θ:

dimensionless temperature

T-Ti/qwd/k:

uniform heat flux

T-Tw/Ti-Tw :

uniform temperature

ν:

fluid kinematic viscosity

ρ:

fluid density

τ:

fluid shearing stress

Φ:

bulk mean temperature—fully developed region

γ:

fully developed transverse temperature profile

1:

fully developed

2:

in the entrance region

i:

at the inlet

m:

bulk mean value

w:

at the heated wall

References

  1. Hatton, A.P.; Quarmby, A.: The Effect of Axially Varying and Unsymmetrical Boundary Conditions on Heat Transfer with Turbulent Flow-Between Parallel Plates. Int. J. Heat Mass Transfer 6 (1963) 906

    Google Scholar 

  2. Sakakibara, M.; Endo, K.: Analysis of Heat Transfer for Turbulent Flow Between Parallel Plates. Int. Chem. Engrg. 16 (1976) 728

    Google Scholar 

  3. Shibani, A.A.; Ozisik, M.N.: A Solution to Heat Transfer in Turbulent Flow Between Parallel Plates. Int. J. Heat Mass Transfer 20 (1977) 565

    Google Scholar 

  4. Leckner, B.: Heat Transfer in the Entrance Region with Fully Developed Turbulent Flow Between Parallel Plates. Int. J. Heat Mass Tran. 15 (1972) 35

    Google Scholar 

  5. Stephenson, P.L.: A theoretical Study of Heat Transfer in Two-Dimensional Turbulent Flow in a Circular Pipe and Between Parallel and Diverging plates. Int. J. Heat Mass Transfer 19 (1976) 413

    Google Scholar 

  6. Emery, A.F.; Gessner, F.B.: The Numerical Prediction of Turbulent Flow and Heat Transfer in the Entrance Region of a Parallel Plate Duct. J. Heat Transfer, ASME Trans. Series C 98 (1976) 594

    Google Scholar 

  7. Van Driest, E.R.: On Turbulent Flow Near a Wall. J. Aero, Sc. 23 (1956) 1007–1/11

    Google Scholar 

  8. Cebeci, T.; Smith, A.M.: Analysis of Turbulent Boundary Layers. Academic Press, N.Y. 1974

    Google Scholar 

  9. Klebanoff, P.S.: Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. NACA TN 3178 (1954)

  10. Kopal, Z.: Numerical Analysis. John Wiley & Sons 1961

  11. Richardson, L.F.: Phil. Trans. Roy. Soc., Vol. A (1927) p. 210

    Google Scholar 

  12. Barrow, H.: An Analytical and Experimental Study of Turbulent Flow Between Two Smooth Parallel Walls with Unequal Heat Fluxes. Int. J. Heat Mass Transfer 5 (1962) 469

    Google Scholar 

  13. Hatton, A.P.; Quarmby, A.; Grundy, I.: Further Calculations in the Heat Transfer with Turbulent Flow Between Parallel Plates. Int. J. Heat Mass Transfer 7 (1964) 817

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diaz, L.A., Suryanarayana, N.V. Application of Rayleigh-Ritz method to forced convection turbulent heat transfer. Wärme- und Stoffübertragung 15, 67–77 (1981). https://doi.org/10.1007/BF01002404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002404

Keywords

  • Heat Transfer
  • Prandtl Number
  • Heat Transfer Rate
  • Incompressible Fluid
  • Forced Convection