Skip to main content
Log in

Transient thermal entrance heat transfer in laminar pipe flows with step change in pumping pressure

Ausgleichsvorgang des Wärmeübergangs im thermischen Einlauf laminarer Rohrströmung bei plötzlicher Änderung des Pumpendrucks

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Analysis is made for the transient heat transfer phenomena in the thermal entrance region of laminar pipe flows. The transient results from both the change in flow field, a step change in pressure gradient from zero to a fixed value, and the change in thermal field, a step change in the inlet temperature. An exponential scheme has been employed to solve the energy equation with the presence of axial heat conduction in the fluid. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of conventional Nusselt number, modified Nusselt number, bulk fluid temperature and pipe wall temperature are presented for water and air over a wide range of outside heat transfer coefficients. It is observed that the outside heat transfer coefficient has a significant influences on the transient heat transfer processes. The results can be comprehensively interpreted by the interactions among the axial convection, axial diffusion, and radial diffusion.

Zusammenfassung

Ausgleichsvorgänge des Wärmeübergangs im thermischen Einlauf einer laminaren Rohrströmung werden analysiert. Die Änderung des Wärmeübergangs resultiert aus Änderungen der Strömlings- und Temperaturfelder. Erstere werden erzwungen durch Änderung des Druckgradienten von Null auf einen bestimmten Wert, letztere durch plötzliche Änderung der Eintrittstemperatur. Eine Exponentialmethode zur Lösung der Energiegleichung wird angewandt unter Berücksichtigung der axialen Wärmeleitung in der Flüssigkeit. Für die bessere Darstellung der Ergebnisse wird eine modifizierte Nusselt-Zahl eingeführt. Die instationare axiale Änderung der konventionellen und der modifizierten Nusselt-Zahlen, und der mittleren Flüssigkeits- und Wandtemperaturen werden für Wasser und Luft angegeben. Es wird gezeigt, daß der äußere Wärmeübergang die Ausgleichsvorgänge wesentlich beeinflußt. Die Ergebnisse werden erklärt durch das Zusammenwirken der axialen Konvektion, der axialen Wärmeleitung und des radialen Wärmeleittransports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a ij :

coefficients; Eq. (13)

Aw :

cross sectional area of pipe wall

A f :

cross sectional area of fluid flow

c p :

specific heat of fluid

c pw :

specific heat of the pipe wall material

h :

local heat transfer coefficient inside the pipe; Eq. (15)

h e :

modified local heat transfer coefficient inside the pipe; Eq. (17)

ii,j, m :

indices for finite difference discretization

J :

total number of grid points in radial direction

J 0 :

Bessel function of the first kind of order zero

J 1 :

Bessel function of the first kind of order one

k :

thermal conductivity of the fluid in the pipe

k w :

thermal conductivity of the pipe wall material

Nu :

conventional local Nusselt number;h (2R)/k

Nu e :

modified local Nusselt number;h e (2R)/k

Nu 0 :

outside Nusselt number; equation (11)

p :

fluid pressure in the pipe

Pe :

Peclet number;u m (2R)/α.

Pr :

Prandtl number;ν/α

q″ w :

wall heat flux

r :

radial coordinate

R :

pipe radius

t :

time

T :

temperature

u :

axial velocity

U :

outside heat transfer coefficient; Eq. (5)

gv :

dimensionless axial velocity; Eq. (1)

x :

axial coordinate

α :

thermal diffusivity of the fluid in the pipe

Δη :

dimensionless radial interval

Δξ :

dimensionless axial interval

Δτ :

dimensionless time step

η :

dimensionless radial coordinate

θ :

dimensionless temperature difference

λ n :

eigenvalue; Eq. (3)

μ :

dynamic viscosity of the fluid in the pipe

ν :

kinematic viscosity of the fluid in the pipe

ϱ :

fluid density

ϱ w :

density of the pipe wall material

ξ :

dimensionless axial coordinate

ξ f :

coolant front due to convection only; Eq. (20)

τ:

dimensionless time

a :

ambient

b :

bulk

e :

entrance

m :

mean

o :

outside

w :

wall

References

  1. Rizika, J. M.: Thermal Lags in Flowing Systems Containing Heat Capacitors. Trans. ASME 76 (1954) 411

    Google Scholar 

  2. Rizika, J. M.: Thermals Lags in Flowing Incompressible Fluid Systems Containing Heat Capacitors. Trans. ASME 78 (1956) 1407

    Google Scholar 

  3. Dusinberre, G. M.: Calcuation of Transient Temperatures in Pipes and Heat Exchangers by Numerical Methods. Trans. ASME 76 (1954) 421

    Google Scholar 

  4. Clark, J. A.; Arpaci, V. S.; Treadwall, K. M.: Dynamic Response of Heat Exchangers Having Internal Heat Sources-I. Trans. ASME 80 (1958) 612

    Google Scholar 

  5. Arpaci, V. S.; Clark, J. A.: Dynamic Response of Heat Exchangers Having Internal Heat Sources-II. Trans. ASME 80 (1958) 625

    Google Scholar 

  6. Arpaci, V. S.; Clark, J. A.: Dynamic Response of Heat Exchangers Having Internal Heat Sources-III. J. Heat Transfer 81 (1959) 253

    Google Scholar 

  7. Siegel, R.; Sparrow, E. M.: Transient Heat Transfer for Laminar Forced Convection in the Thermal Entrance Region of Flat Ducts. J. Heat Transfer 81 (1959) 29

    Google Scholar 

  8. Siegel, R.: Transient Heat Transfer for Laminar Slug Flow in Ducts. J. Appl. Mech. 81 (1959) 140

    Google Scholar 

  9. Siegel, R.: Heat Transfer for Laminar Flow in Ducts with Arbitrary Time Variations in Wall Temperature. J. Appl. Mech. 82 (1960) 241

    Google Scholar 

  10. Perlmutter, M.; Siegel, R.: Two-Dimensional Unsteady In-compressible Laminar Duct Flow with a Step Change in Wall Temperature. Int. J. Heat Mass Transfer 3 (1961) 94

    Google Scholar 

  11. Perlmutter, M.; Siegel, R.: Unsteady Laminar Flow in a Duct with Unsteady Heat addition. J. Heat Transfer 83 (1961) 432

    Google Scholar 

  12. Sparrow, E. M.; Farias, F. N.: Unsteady Heat Transfer in Ducts with Time-Varying Inlet Temperature and Participating Walls. Int. J. Heat Mass Transfer 11 (1968) 837

    Google Scholar 

  13. Lin, H. T.; Shih, Y. P.: Unsteady Thermal Entrance Heat Transfer of Power-Law Fluids in Pipes and Plate Slits. Int J. Heat Mass Transfer 24 (1981) 1531

    Google Scholar 

  14. Kakac, S.; Yener, Y.: Exact Solution of the Transient Forced Convection Energy Equation for Timewise Variation of Inlet Temperature. Int. J. Heat Mass Transfer 16 (1973) 2205

    Google Scholar 

  15. Kakac, S.: Transient Heat Transfer by Forced Convection in Channels. In: Kakac, S.; Spalding, D. B., Eds.: Turbulent Forced Convection in Channels and Bundles. Washington DC: Hemisphere Publ. Corporation 1979

    Google Scholar 

  16. Lin, T. F.; Hawks, K. H.; Leidenfrost, W.: Unsteady Thermal Entrance Heat Transfer in Laminar Pipe Flows with Step Change in Ambient Temperature. Wärme-Stoffübertrag. 17 (1983) 125–132

    Google Scholar 

  17. White, F. M.: Viscous Fluid Flow. New York: McGraw-Hill 1974

    Google Scholar 

  18. Faghri, M.; Sparrow, E. M.: Simultaneous Wall and Fluid Axial Conduction in Laminar Pipe-Flow Heat Transfer. J. Heat Transfer 102 (1980) 58

    Google Scholar 

  19. Spalding, D. B.: A Novel Finite-Difference Formulation for Differential Expressions Involving Both First and Second Derivatives. Int. J. Num. Meth. Eng. 4 (1972) 551

    Google Scholar 

  20. Patankar, S. V.: Numerical Heat Transfer and Fuid Flow. Washington DC: Hemisphere Publishing Corporation 1980

    Google Scholar 

  21. Lin, T. F.; Hawks, K. H.; Leidenfrost, W.: Analysis of Viscous Dissipation Effects on Thermal Entrance Heat Transfer in Laminar Pipe Flows with Convective Boundary Conditions. Wärme-Stoffübertrag. 17 (1983) 97–105

    Google Scholar 

  22. Hsu, C. J.: Exact Solution to Entry-Region Laminar Heat Transfer with Axial Conduction and the Boundary Condition of the Third Kind. Chem. Eng. Sci. 23 (1968) 457

    Google Scholar 

  23. Lin, T. F.; Hawks, K. H.; Leidenfrost, W.: Transient Conjugated Heat Transfer between a Cooling Coil and Its Surrounding Enclosure. Accepted for publication in: Int. J. Heat Mass Transfer (1983)

  24. Lin, T. F.: Theoretical and Experimental Study of Heat Transfer Characteristics of Cabinet Calorimeter System, Ph. D. Thesis, Purdue University, West Lafayette, Indiana 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, T.F., Hawks, K.H. & Leidenfrost, W. Transient thermal entrance heat transfer in laminar pipe flows with step change in pumping pressure. Wärme- und Stoffübertragung 17, 201–209 (1983). https://doi.org/10.1007/BF01002363

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002363

Keywords

Navigation