Skip to main content
Log in

Radiative melting of ice layer adhering to a vertical surface

Schmelzen einer Eisschicht an einer senkrechten Wand durch Strahlung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

This paper is concerned with melting of a vertical ice layer adhering to the substrate by using radiating heat source of halogen lamps having a large fraction of short wave beam or nichrome heater having a comparatively large fraction of long wave one. From the present experimental results, it can be seen that the heating of short wave radiation produces a peculiar melting behavior of strongly rough melting-surface due to the internal melting at the grain boundary of ice-surface. On the other hand, for the case of long wave radiation the melting-surface becomes very smooth. The melting rate of clear ice layer by short wave radiation obtained from halogen lamps is smaller than that of cloudy ice layer due to the good penetration of short wave fraction through the clear ice layer. Moreover, the raising of temperature of ice-substrate interface could offer a feasibility of removing ice layer from the structure subject to atmospheric icing. Concludingly, it is clarified that the melting rate of ice layer could be predicted numerically by using the band model of extinction coefficient or absorption coefficient presented in this study.

Zusammenfassung

Diese Arbeit behandelt das Schmelzen einer senkrechten Eisschicht auf einer Unterlage mit Hilfe von Halogen-Lampen mit einem hohen Anteil an kurzen Wellen und Nichromheizern mit einem hohen Anteil an langen Wellen. Aus diesen Versuchen läßt sich ableiten, daß die Heizung durch kurzwellige Strahlung ein eigentümliches Schmelzverhalten mit sehr rauher Oberfläche hervorruft, verursacht durch Schmelzen an den Korngrenzen der Eisoberfläche. Bei langwelliger Heizung wird die Oberfläche sehr glatt. Die Abschmelzrate einer Klareisschicht bei kurzwelliger Heizung durch Halogen-Lampen ist geringer als die einer Opaleisschicht wegen des besseren Eindringens der kurzen Wellen in das klare Eis. Der Temperaturanstieg an der Grenze Eis — Unterlage bietet die Möglichkeit der Enteisung von Bauteilen, die der atmosphärischen Vereisung ausgesetzt sind. Es folgt, daß die Abschmelzrate einer Eisschicht, numerisch vorausberechnet werden kann, indem man das Bandmodell des Extinktions- und des Absorptionskoeffizienten dieser Arbeit verwendet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

transmission, defined in equation (4)

aν :

monochromatic absorption coefficient of clear ice

C:

constant

Eb :

monochromatic emissive power

hi :

thickness of ice layer

hin :

initial thickness of ice layer

hm :

thickness of substrate

k0 :

extinction coefficient for h0 → 0

ks :

modified extinction coefficient

kν :

monochromatic extinction coefficient

Li :

latent heat of melting

n:

index number, defined in equation (2)

\(q_{h_i }\) :

heat flux absorbed at surface of substrate

qr0 :

radiant heat flux impinged onto ices-urface

qri{y}:

radiant heat flux in ice layer

S:

distance from initial ice-surface to transient melting-surface

Tb :

temperature of radiating heat source

Ti :

temperature in ice layer

Tm :

temperature in substrate

T :

environmental temperature

T1 :

temperature of surface of ice layer

T2 :

temperature of substrate-surface

T3 :

temperature of back side surface of substrate

t:

time

y:

distance from initial ice-surface

Z:

ratio of backward radiative heat flux to forward one for cloudy ice

α :

heat transfer coefficient

χi :

thermal diffusivity of ice

χm :

thermal diffusivity of substrate

λi :

thermal conductivity of ice

λm :

thermal conductivity of substrate

υ:

wavelength

υc :

critical wavelength

ρi :

density of ice

σ:

Stefan-Boltzmann constant

References

  1. Lock, G.S.H.; Gunderson, J.R.; Quon, D.; Donnelly, J.K.: A study of one-dimensional ice formation with particular reference to periodic growth and decay. Int. J. Heat and Mass Transfer. 12 (1969) 1343/1352

    Google Scholar 

  2. Boger, D.V.; Westwater, J.: Effect of buoyancy on the melting and freezing process. J. Heat Transfer, Trans. ASME, Ser. C, 89 (1967) 81/89

    Google Scholar 

  3. Seki, N.; Sugawara, M.; Fukusako, S.: Radiative melting of a horizontal clear ice layer. Wärmeund Stoffübertragung, to be published

  4. Nosawa, K.: Water film and heat transfer coefficient at the melting-surface of a vertical ice layer. 12th Annual Symposium, Heat Transfer Society of Japan (1974) 353/356

  5. Maeno, N.: Observation of internal and surface melting of ice. Low-Temperature Science, Ser. A28 (1978) 22/31

    Google Scholar 

  6. Gilpin, R.R.; Robertson, R.B.; Singh, B.: Radiative heating in ice. J. of Heat Transfer. Trans. ASME, Ser. C, 99 (1977) 227/232

    Google Scholar 

  7. Wendler, G.: Some measurements of the extinction coefficients of river ice Polarforschung. Organ der Deutschen Gesellschaft für Polarforschung, VI. 39 (1969) 253/256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, N., Sugawara, M. & Fukusako, S. Radiative melting of ice layer adhering to a vertical surface. Warme- und Stoffubertragung 12, 137–144 (1979). https://doi.org/10.1007/BF01002329

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002329

Keywords

Navigation