Skip to main content
Log in

An analysis of turbulent free convection about bodies of arbitrary geometrical configurations

Eine Analyse der freien Konvektion um Körper beliebiger geometrischer Gestalt

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A general solution method is suggested for the prediction of the turbulent free convection heat transfer from curved surfaces. The method which may be viewed as a generalized version of the Eckert-Jackson method for the isothermal plate, is designed to deal with bodies of arbitrary geometrical configurations. The surface wall temperature is also allowed to vary in the streamwise direction in an arbitrary fashion. For the illustrative purpose, the calculations are carried out for the turbulent free convection about the horizontal circular cylinder, and the results are compared with the existing empirical formula. The flow transition from laminar to turbulent is also predicted by matching the laminar and turbulent solutions.

Zusammenfassung

Es wird eine allgemeine Lösungsmethode zur Vorhersage des Wärmeübergangs bei turbulenter, freier Konvektion um gekrümmte Flächen vorgeschlagen. Die Methode, die als generalisierte Version der Eckert-Jackson-Methode für die isotherme Platte angesehen werden kann, ist für Körper beliebiger geometrischer Gestalt gedacht. Auch die Oberflächentemperatur kann sich in Strömungsrichtung beliebig ändern. Zur Illustration für die Gültigkeit des Verfahrens werden die Rechnungen für turbulente, freie Konvektion um waagrechte, runde Zylinder durchgeführt und die Ergebnisse werden mit vorhandenen empirischen Formeln verglichen. Auch der Übergang von laminarer zu turbulenter Umströmung wird durch Anpassen der laminaren und turbulenten Lösungen vorhergesagt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B, D :

shape factors

Cp :

specific heat

d :

diameter of cylinder

f :

function for velocity profile

fR :

Reynolds analogy factor

g :

acceleration due to gravity

g x :

tangential component ofg

Gr d :

Grashof number based ong andd

Gr x :

Grashof number based on gx andx

h :

local heat transfer coefficient

I, I t :

functions associated with deviation from unity

i :

integer associated with the coordinate system

j :

integer associated with the body shape at stagnation

k :

thermal conductivity

n :

exponent associated with the temperature difference

Nux :

local Nusselt number, hx/k

Nud :

=hd/k

Pr :

Prandtl number

r :

function representing wall geometry

T :

temperature

ΔT :

=T w-Te

u :

streamwise velocity component

u c :

characteristic velocity

x, y :

boundary layer coordinates

δ :

boundary layer thickness

ξ :

acceleration parameter

θ :

function for temperature profile

References

  1. Squire, H. B.: in: Modern Development in Fluid Dynamics, vol. 2 (S. Goldstein, ed.), New York: Oxford University Press 1938, pp. 641–643

    Google Scholar 

  2. Eckert, E. R. G.; Drake, R. M.: Heat and Mass Transfer, 2nd ed., New York: McGraw-Hill 1959

    Google Scholar 

  3. Merk, H. J.; Prins, J. A.: Thermal Convection in Laminar Boundary Layers. I, II and III, App. Sci. Res., Sec. A, vol. 4 (1954) pp. 11–24, 195–206 and 207–221

    Google Scholar 

  4. Levy, S.: Integral Methods in Natural-Convection Flow, Trans. ASME, vol. 77 (1955) pp. 515–522

    Google Scholar 

  5. Lienhard, J.; Eichhorn, R.; Dhir, V.: Laminar Natural Convection under Nonuniform Gravity, J. Heat Transfer, vol. 94 (1972) pp. 80–86

    Google Scholar 

  6. Koyama, H.; Nakayama, A.: An Integral Method in Free Convection Flows under Nonuniform Gravity, Letters in Heat and Mass Transfer, vol. 9 (1982) pp. 151–158

    Google Scholar 

  7. Nakayama, A.; Koyama, H.; Ohsawa, S.: An Approximate Solution Procedure for Laminar Free and Forced Convection Heat Transfer Problems, Int. J. Heat Mass Transfer, vol. 26 (1983) pp. 1721–1726

    Google Scholar 

  8. Eckert, E. R. G.; Jackson, T. W.: Nat. Advisory Comm. Aeronaut. Tech. Note 2207, 1950

  9. Raithby, G. D.; Hollands, K. G. T.: A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems, Advances in Heat Transfer, Academic Press, 1974, pp. 265–315

  10. Kuehn, T. H.; Goldstein, R. L.: Numerical Solution to the Navier-Stokes Equations for Laminar Natural Convection about a Horizontal Isothermal Circular Cylinder, Int. J. Heat Mass Transfer, vol. 23 (1980) pp. 971–979

    Google Scholar 

  11. Farouk, B.; Güceri, S. I.: Natural Convection from Horizontal Cylinders in Interacting Flow Fields, Int. J. Heat Mass Transfer, vol. 26 (1983) pp. 231–243

    Google Scholar 

  12. Nakayama, A.; Koyama, H.; Ohsawa, S.: Free Convection from a Cone with a Closed End, Letters in Heat and Mass Transfer, vol. 9 (1982) pp. 455–462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are grateful to Prof. E. R. G. Eckert for pointing out an error in the original manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, A., Koyama, H. An analysis of turbulent free convection about bodies of arbitrary geometrical configurations. Wärme- und Stoffübertragung 19, 263–268 (1985). https://doi.org/10.1007/BF01002280

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002280

Keywords

Navigation