Naunyn-Schmiedebergs Archiv für Pharmakologie

, Volume 271, Issue 1, pp 111–120 | Cite as

On the role of central noradrenaline in the regulation of motor activity and body temperature in the mouse

  • Torgny H. Svensson


Inhibition of dopamine-β-hydroxylase by FLA-63 [bis-(4-methyl-1-homopiperazinylthiocarbonyl)-disulfide], 40 mg/kg, in the mouse caused decrease in motor activity, depletion of brain noradrenaline (NA) and reduction in body temperature. Injection ofd,l-threo-3,4-dihydroxyphenylserine (DOPS), 1000mg/kg, restored behaviour, central NA and temperature. In the experiments nialamide, 50 mg/kg, was given 10 min after FLA-63 in order to prevent at least part of the catabolism of the NA formed from DOPS. This injection of nialamide, which by itself caused elevation of central monoamine levels, increase in motor activity but no change in temperature, did not antagonize the effects of FLA-63. The effects of DOPS were likely to be mediated via the central nervous system since injection of NA, causing sympathomimetic and biochemical effects in the periphery similar to those elicited by DOPS, did not antagonize the FLA-63-induced effects. The data support the view that central NA neurons are involved in the control of motor activity and body temperature in the mouse.

Key words

Dopamine-β-Hydroxylase Inhibition d,l-Threo-3,4-Dihydroxyphenylserine Motility Temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aigner, A. von., Hornykiewicz, O., Lisch, H.-J., Springer, A.: Beeinflussung der Gehirn-Katecholamine, der Spontanaktivität und derl-DOPA-Hyperaktivität durch Diäthyldithiocarbamat. Med. Pharmacol. exp.17, 576–585 (1967).Google Scholar
  2. Andén, N.-E., Magnusson, T.: An improved method for the fluorimetric determination of 5-hydroxytryptamine in tissues. Acta physiol. scand.69, 87–94 (1967).Google Scholar
  3. Bartholini, G., Constantinidis, J., Tissot, R., Pletscher, A.: Formation of monoamines from various amino acids in the brain after inhibition of extracerebral decarboxylase. Biochem. Pharmacol.20, 1243–1247 (1971).Google Scholar
  4. Bertler, Å.: Effect of reserpine on the storage of catecholamines in brain and other tissues. Acta physiol. scand.51, 75–83 (1961).Google Scholar
  5. —, Carlsson, A., Rosengren, E.: A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta physiol. scand.44, 273–292 (1958).Google Scholar
  6. Blaschko, H., Burn, J. H., Langemann, H.: The formation of noradrenaline from dihydroxyphenylserine. Brit. J. Pharmacol.5, 431–437 (1950).Google Scholar
  7. —, Crusćiel, T. L.: The decarboxylation of amino acids related to tyrosine and their awakening action in reserpine-treated mice. J. Physiol. (Lond.)151, 272–284 (1960).Google Scholar
  8. Brittain, R. T., Handley, S. L.: Temperature changes produced by the injection of catecholamines and 5-hydroxytryptamine into the cerebral ventricles of the conscious mouse. J. Physiol. (Lond.)192, 805–813 (1967).Google Scholar
  9. Carlsson, A.: Functional significance of drug-induced changes in brain monoamine levels. In: Progress in Brain Research 8, Biogenic Amines pp. 9–27. Eds.: H. E. Himwich and W. A. Himwich. Amsterdam: Elsevier 1964.Google Scholar
  10. - Corrodi, H., Florvall, L., Ross, S.: Austrian Patent no. 284143 (1970).Google Scholar
  11. —, Lindqvist, M.: In vivo decarboxylation ofα-methyldopa andα-methyl metatyrosine. Acta physiol. scand.54, 87–94 (1962).Google Scholar
  12. ——, Magnusson, T.: 3,4-Dihydroxyphenylalanine and 5-hydroxytryptamine as reserpine antagonists. Nature (Lond.)180, 1200 (1957).Google Scholar
  13. —, Waldeck, B.: A method for the determination of dopamine (3-hydroxytyramine). Acta physiol. scand.44, 293–298 (1958).Google Scholar
  14. Corrodi, H., Fuxe, K., Hamberger, B., Ljungdahl, Å.: Studies on central and peripheral noradrenaline neurons using a new dopamine-β-hydroxylase inhibitor. Europ. J. Pharmacol.12, 145–155 (1970).Google Scholar
  15. ——, Hökfelt, T.: A possible role played by central monoamine neurons in thermoregulation. Acta physiol. scand.71, 224–232 (1967).Google Scholar
  16. —, Hanson, L. C. F.: Central effects of an inhibitor of tyrosine hydroxylase. Psychopharmacologia (Berl.)10, 116–125 (1966).Google Scholar
  17. Creveling, C. R., Daly, J., Tokuyama, T., Witkop, B.: The combined use ofα-methyltyrosine and threo-dihydroxyphenylserine-selective reduction of dopamine levels in the central nervous system. Biochem. Pharmacol.17, 65–70 (1968).Google Scholar
  18. Feldberg, W., Lotti, V. J.: Temperature changes produced in the unanaesthetized rat by monoamines and tranylcypromine injected into the cerebral ventricles. J. Physiol. (Lond.)191, 35–36 P (1967).Google Scholar
  19. Feldberg, W., Myers, R. D.: A new concept of temperature regulation by amines in the hypothalamus. Nature (Lond.)200, 1325 (1963).Google Scholar
  20. ——, Effects on temperature of amines injected into the cerebral ventricles. A new concept of temperature regulation. J. Physiol. (Lond.)173, 226–237 (1964).Google Scholar
  21. Florvall, L., Corrodi, H.: Dopamine-β-hydroxylase inhibitors. The preparation and the dopamineβ-hydroxylase inhibitory activity of some compounds related to dithiocarbamic acid and thiuramdisulfide. Acta pharmaceut. suec.7, 7–22 (1970).Google Scholar
  22. Gordon, R., Spector, S., Sjoerdsma, A., Udenfriend, S.: Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmacol. exp. Ther.153, 440–447 (1966).Google Scholar
  23. Hanson, L. C. F.: The disruption of conditioned avoidance response following selective depletion of brain catecholamines. Psychopharmacologia (Berl.)8, 100–110 (1965).Google Scholar
  24. Holtz, P.: Role ofl-dopa decarboxylase in the biosynthesis of catecholamines in nervous tissue and the adrenal medulla. Pharmacol. Rev.11, 317–329 (1959).Google Scholar
  25. Jacobsen, E.: Die Temperaturwirkung einiger phenylsubstituierter aliphatischer Amine. Skand. Arch. Physiol.81, 244–249 (1939).Google Scholar
  26. Krantz, K. D., Seiden, L. S.: Effects of diethyldithiocarbamate on the conditioned avoidance response of the rat. J. Pharm. Pharmacol.20, 166–167 (1968).Google Scholar
  27. Moore, K. E.: Effects ofα-methyltyrosine on brain catecholamines and conditioned behaviour in guinea pigs. Life Sci.5, 55–65 (1966).Google Scholar
  28. —: Effects of disulfiram and diethyldithiocarbamate on spontaneous locomotor activity and brain catecholamine levels in mice. Biochem. Pharmacol.18, 1627–1634 (1969).Google Scholar
  29. —, Rech, R. H.: Antagonism by monoamine oxidase inhibitors ofα-methyltyrosineinduced catecholamine depletion and behavioural depression. J. Pharmacol. exp. Ther.156, 70–75 (1967).Google Scholar
  30. Persson, T., Waldeck, B.: Is there an interaction between dopamine and noradrenaline containing neurons in the brain ? Acta physiol. scand.78, 142–144 (1970a).Google Scholar
  31. ——: Further studies on the possible interaction between dopamine and noradrenaline containing neurons in the brain. Europ. J. Pharmacol.11, 315–320 (1970b).Google Scholar
  32. Pletscher, A.: Amine precursors in the treatment and study of affective disorders. II. Symposium in VII. International Congress of CINP, Prague, August 11–15, 1970.Google Scholar
  33. Rech, R. H., Borys, H. K., Moore, K. E.: Alterations in behaviour and brain catecholamine levels in rats treated withα-methyltyrosine. J. Pharmacol. exp. Ther.153, 412–419 (1966).Google Scholar
  34. Scheel-Krüger, J., Randrup, A.: Stereotype hyperactive behaviour produced by dopamine in the absence of noradrenaline. Life Sci.6, 1389–1398 (1967).Google Scholar
  35. Simmonds, M. A.: Effect of environmental temperature on the turnover of noradrenaline in hypothalamus and other areas of rat brain. J. Physiol. (Lond.)203, 199–210 (1969).Google Scholar
  36. —: Effect of environmental temperature on the turnover of 5-hydroxytryptamine in various areas of rat brain. J. Physiol. (Lond.)211, 93–108 (1970).Google Scholar
  37. —, Iversen, L. L.: Thermoregulation: Effects of environmental temperature on turnover of hypothalamic norepinephrine. Science158, 473–474 (1969).Google Scholar
  38. Strömberg, U., Svensson, T. H.:l-DOPA induced effects on motor activity in mice after inhibition of dopamine-β-hydroxylase. Psychopharmacologia (Berl.)19, 53–60 (1971).Google Scholar
  39. Svensson, T. H., Thieme, G.: An investigation of a new instrument to measure motor activity of small animals. Psychopharmacologia (Berl.)14, 157–163 (1969).Google Scholar
  40. —, Waldeck, B.: On the significance of central noradrenaline for motor activity: Experiments with a new dopamine-β-hydroxylase inhibitor. Europ. J. Pharmacol.7, 278–282 (1969).Google Scholar
  41. ——: the role of brain catecholamines in motor activity. Experiments with inhibitors of synthesis and of monoamine oxidase. Psychopharmacologia (Berl.)18, 357–365 (1970).Google Scholar
  42. Weil-Malherbe, H.: The passage of catecholamines through the blood-brain barrier. In: Adrenergic Mechanisms, Ciba Symposium, pp. 421–423. Eds.: J. R. Vane, G. E. W. Wolstenholme, and M. O'Connor. London: Churchill 1960.Google Scholar
  43. Winer, B. J.: Statistical principles in experimental design, pp. 36–39, 92–96. New York: Mc Graw-Hill 1962.Google Scholar
  44. Wise, C. D., Stein, L.: Facilitation of brain self-stimulation by central administration of norepinephrine. Science163, 299–301 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Torgny H. Svensson
    • 1
  1. 1.Department of PharmacologyUniversity of GöteborgDeutschland

Personalised recommendations