, Volume 92, Issue 2, pp 115–139 | Cite as

Golgi-Em-study of first and second order neurons in the visual system ofCataglyphis bicolor Fabricius (Hymenoptera, Formicidae)

  • Eric P. Meyer


  1. 1)

    Comparable to the bee, but in contrast to the majority of ants, the desert antCataglyphis bicolor has been shown to exhibit a highly developed repertoire of visually guided behavioural responses. This paper deals with the anatomy and fine structure of the peripheral visual pathway of this ant.

    In the first visual neuropile, the lamina, first and second order neurons are classified by applying Golgi methods adapted for electron microscopy. Synaptic connections within the lamina are described and discussed. The results are summarised in developing a three-dimensional model of the ant's lamina (Fig. 17).

  2. 2)

    Eachretinula within the central eye region is composed of four large (nos. 2, 4, 6 and 8) and four small retinular cells (nos. 1, 3, 5 and 7) and a basal ninth cell. Visual cells nos. 2, 3, 4, 6, 7, and 8 form short unbranched axons (Rs), which terminate within the lamina. The visual cells nos. 1 and 5 (Rl), as well as the basal cell no. 9, show arborisations in the lamina, but terminate in the second visual neuropile, the medulla. Within the lamina all nine retinular cell axons, originating from one retinula, form a cartridge within which they interact with the second order neurons, the monopolar cells.

    Collaterals of second order neurons and side branches of retinular cell axons form local neuronal circuits.

  3. 3)

    Five types ofmonopolar cells have been classified by means of their dendritic fields within the lamina and the medulla (L1a, b, c, L2 and L4). They relay the retinular cells with higher order neurons within the medulla. In the distal layer of the lamina (stratum A) the spreads of the monopolar cells are restricted to a single cartridge, whereas in the proximal stratum C their collateral processes extend laterally through more than one cartridge. The collaterals of the L4-type of monopolar cells are exclusively confined to stratum C. There they are arranged bilaterally along the dorsoventral axis of the eye.

    Within stratum A, where all neurons are organised in well defined columns (cartridges), the axons of the short visual cells seem to be distributed over any cross section of a cartridge at random. In this layer, tangential fibres are the only candidates for inter-cartridge cross talk. In stratum C, the columnar organisation of the neuropile becomes less obvious because of the wide spread ramifications of the second order neurons. For instance, the collaterals of the L1a-type of monopolar cell extend over up to 18 neighbouring cartridges.

  4. 4)

    Three types ofcentrifugal fibres running from the medulla to the lamina are observed (T-fibres). Some of them form wide field arborisations either in stratum A (type T2) or in stratum C (type T3). In linear scale, their collaterals may extend over more than 40% of the large (dorsoventral) axis of the lamina.

  5. 5)

    Receptor terminals, especially Rs-fibres, are densely packed with elongated synaptic vesicles, whereas in second order neurons round vesicles are arranged around the presynaptic elements. Especially in Rs-fibres analyses of serial sections reveal T-shaped synaptic ribbons, which are the presynaptic sites as regards four postsynaptic elements. In case of rod-like presynaptic elements diadic and triadic arrangements of postsynaptic fibres can also be observed.

    Four main types of synaptic configurations are discriminated: (1) Receptor terminals synapse on second order neurons. (2) Second order neurons synapse on receptor cell axons as well as on other second order profiles. These synapses are sometimes observed in feedback configurations. (3) Synapses occuring between receptor axon terminals. (4) A small, probably efferent neurosecretory nerve fibre synapses on second order neurons. Neurosecretory fibres of larger diameters (to 1.5 Μm are frequently found in stratum C.



Visual Cell Retinular Cell Order Neuron Synaptic Ribbon Local Neuronal Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armett-Kibel, C., Meinertzhagen, I.A., Dowling, J.E.: Cellular and synaptic organization in the lamina of the dragon-fly Sympetrum rubicundulum. Proc. R. Soc. Lond. B.196, 385–413 (1977)Google Scholar
  2. Barlow, R.B., Bolanowski, S.J.: Efferent mediated circadian changes in the neural activity of the Limulus lateral eye. Invest. Ophtal.16, 120 (1977)Google Scholar
  3. Beattie, T.M.: Histology, histochemistry and ultrastructure of neurosecretory cells in the optic lobe of the cockroach Periplaneta americana. J. Insect Physiol.17, 1843–1855 (1971)Google Scholar
  4. Blackstadt, T.W.: Electron microscopy of golgi preparations for the study of neuronal relations. In: Contemporary research methods in neuroanatomy (W.J.H. Nauta, S.O.E. Ebesson, eds.), pp. 186–216. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  5. Boschek, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch.118, 369–409 (1971)Google Scholar
  6. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res.3, 271–298 (1967)Google Scholar
  7. Braitenberg, V., Debbage, P.: A regular net of reciprocal synapses in the visual system of the fly Musca domestica. J. comp. Physiol.90, 25–31 (1974)Google Scholar
  8. Brunnert, A., Wehner, R.: Fine structure of light- and dark-adapted eyes of desert ants, Cataglyphis bicolor (Formicidae, Hymenoptera). J. Morph.140, 15–30 (1973)Google Scholar
  9. Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics24, 85–101 (1976)Google Scholar
  10. Burkhardt, W., Braitenberg, V.: Some peculiar synaptic complexes in the first visual ganglion of the fly, Musca domestica. Cell Tiss. Res.173, 287–308 (1976)Google Scholar
  11. Cajal, S.R., Sanchez, D.: Contribution al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. Univ. Madrid13, 1–164 (1915)Google Scholar
  12. Campos-Ortega, J.A., Strausfeld, N.J.: Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. Brain Res.59, 119–136 (1973)Google Scholar
  13. Chappell, R.L., Dowling, J.E.: Neural organization of the median ocellus of the dragonfly. I. Intracellular electrical activity. J. Gen. Physiol.60, 121–147 (1972)Google Scholar
  14. Chi Che, Carlson, S.D.: Close apposition of photoreceptor cell axons in the house fly. J. Insect Physiol.22, 1153–1157 (1976)Google Scholar
  15. Colonnier, M.: The tangential organization of the visual cortex. J. Anat. (Lond.)98, 327–344 (1964)Google Scholar
  16. De Robertis, E.: Subcellular distribution of neurohumors and chemical receptors in the central nervous system. J. Neuro-Visceral Rel., Suppl.9, 261–276 (1969)Google Scholar
  17. Duelli, P.: The relation of astromenotactic and anemomenotactic orientation mechanisms in desert ants, Cataglyphis bicolor (Formicidae, Hymenoptera). In: Information processing in the visual systems of arthropods (R. Wehner, ed.), pp. 281–286. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  18. Duelli, P.: A fovea for e-vector orientation in the eye of Cataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol.102, 43–56 (1975)Google Scholar
  19. Duelli, P., Wehner, R.: The spectral sensitivity of polarised light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol.86, 37–53 (1973)Google Scholar
  20. Elofsson, R., Klemm, N.: Monoamine-containing neurons in the optic ganglia of crustaceans and insects. Z. Zellforsch.133, 475–499 (1972)Google Scholar
  21. Elofsson, R., NÄssel, D., Myhrberg, H.: A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla externa) of the crayfish Pacifastacus leniusculus. Cell Tiss. Res.182, 287–297 (1977)Google Scholar
  22. Fahrenbach, W.H.: The morphology of the Limulus visual system V. Protocerebral neurosecretion and ocular innervation. Z. Zellforsch.144, 153–166 (1973)Google Scholar
  23. Fleissner, G., Schliwa, W.: Neurosecretory fibres in the median eyes of the scorpion, Androctonus australis L. Cell Tiss. Res.178, 189–198 (1977)Google Scholar
  24. Hafner, G.S.: The neural organization of the lamina ganglionaris in the crayfish: A golgi and EM study. J. comp. Neurol.152, 255–280 (1973)Google Scholar
  25. Hafner, G.S.: The ultrastrueture of retinula cell endings in the compound eye of the crayfish. J. Neurocytol.33, 295–311 (1974)Google Scholar
  26. Hámori, J., Horridge, G.A.: The lobster optic lamina. II. Types of synapse. J. Cell Sci.1, 257–270 (1966)Google Scholar
  27. Herrling, P.L.: Topographische Untersuchungen zur funktionellen Anatomie der Retina von Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Dissertation UniversitÄt Zürich (1975)Google Scholar
  28. Herrling, P.L.: Regional distribution of three ultrastructural retinula types in the retina of Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tiss. Res.169, 247–266 (1976)Google Scholar
  29. Hökfelt, T.: Invitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch.91, 1–74 (1968)Google Scholar
  30. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for the use in electron microscopy. J. Cell. Biol.27, 137A-138A (1965)Google Scholar
  31. Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J. comp. Physiol.113, 35–53 (1977)Google Scholar
  32. Knowles, F.G.W.: Neuronal properties of neurosecretory cells. In: “Neurosecretion” IV International symposium in neurosecretion (F. Stutinsky, ed.), pp. 8–19. Berlin: Springer 1967Google Scholar
  33. Kretz, R.: Verhaltensphysiologische Analyse des Farbensehens der Ameise Cataglyphis bicolar (Formicidae, Hymenoptera). Dissertation UniversitÄt Zürich (1977)Google Scholar
  34. Kretz, R.: A behavioural analysis of colour vision in the ant Cataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol. (in press, 1979)Google Scholar
  35. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J. comp. Physiol.84, 335–355 (1973)Google Scholar
  36. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. comp. Physiol.92, 377–396 (1974)Google Scholar
  37. Laughlin, S.B.: The function of the lamina ganglionaris. In: The compound eye and vision of insects. (G.A. Horridge ed.), pp. 341–358. Oxford: Clarendon Press 1975Google Scholar
  38. Laughlin, S.B.: Adaptations of the dragonfly retina for constant detection and the elucidation of neural principles in the peripheral visual system. In: Neural principles in vision (F. Zettler, R. Weiler, eds., pp. 175–193. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  39. Luft, J.H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961)Google Scholar
  40. Menzel, R.: Spectral sensitivity of monopolar cells in the bee lamina. J. comp. Physiol.93, 337–346 (1974)Google Scholar
  41. Menzel, R., Blakers, M.: Colour receptors in the bee's eye morphology and spectral sensitivity. J. comp. Physiol.108, 11–33 (1976)Google Scholar
  42. Menzel, R., Lange, G.: Änderung der Feinstruktur im Komplexauge von Formica polyctena bei der Helladaptation. Z. Naturforsch.26B, 357–359 (1971)Google Scholar
  43. Menzel, R., Snyder, A.W.: Polarized light detection in the bee, Apis mellifera, J. comp. Physiol.88, 247–270 (1974)Google Scholar
  44. Meyer, E.P.: Strukturanalyse der Neurone I. und II. Ordnung in Sehsystem der Ameise Cataglyphis bicolor (Formicidae, Hymenoptera). Dissertation UniversitÄt Zürich (1976)Google Scholar
  45. Moring, J.: Spectral sensitivity of monopolar neurons in the eye of Calliphora. J. comp. Physiol.123, 335–338 (1978)Google Scholar
  46. Myhrberg, H.: Ultrastructural localization of monoamines in the epidermis of Lumbricus terrestris (L.). Z. Zellforsch.117, 139–154 (1971)Google Scholar
  47. NÄssel, D.R.: The organization of the lamina ganglionaris of the prawn, Pandalus borealis (Kröyer). Cell Tiss. Res.163, 445–464 (1975)Google Scholar
  48. NÄssel, D.R.: The retina and retinal projection on the lamina ganglionaris of the crayfish, Pacifastacus leniusculus (Dana). J. comp. Neurol.167, 341–360 (1976)Google Scholar
  49. NÄssel, D.R.: Types and arrangements of neurons in the crayfish optic lamina. Cell Tiss. Res.179, 45–75 (1977)Google Scholar
  50. Rakic, P.: Local circit neurons. Neurosciences Res. Prog. Bull. 13/3, 291–446 (1975)Google Scholar
  51. Ralston, H.J.: Evidence for presynaptic dendrites and proposal for their mechanism of action. Nature230, 585–587 (1971)Google Scholar
  52. Reimer, L.: Elektronenmikroskopische Untersuchungs- und PrÄparationsmethoden. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  53. Ribi, W.A.: Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tiss. Res.148, 277–286 (1974)Google Scholar
  54. Ribi, W.A.: The neurons of the first optic ganglion of the bee, Apis mellifera. Adv. Anal, Embryol. and Cell Biol.50, 1–43 (1975a)Google Scholar
  55. Ribi, W.A.: Golgi studies of the optic ganglion of the ant, Cataglyphis bicolor. Cell Tiss. Res.160, 207–217 (1975b)Google Scholar
  56. Ribi, W.A.: Fine structure of the first optic ganglion (lamina) of the cockroach, Periplaneta americana. Tissue and Cell9, 57–72 (1977)Google Scholar
  57. Shaw, S.R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vis. Res.9, 999–1029 (1969)Google Scholar
  58. Shepherd, G.M.: The neuron doctrine: a revision of functional concepts. Yale J. Biol. Med.45, 584–599 (1972)Google Scholar
  59. Stell, W.K.: Correlation of retinal cytoarchitecture and ultrastructure in golgi preparation. Anat. Rec.153, 389–398 (1965)Google Scholar
  60. Stell, W.K.: The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Am. J. Anat.121, 401–424 (1967)Google Scholar
  61. Strausfeld, N.J.: Golgi studies on insects. Part II. The optic lobes of diptera. Phil. Trans. R. Soc. London258B, 135–223 (1970a)Google Scholar
  62. Strausfeld, N.J.: Variations and invariants of cell arrangements in the nervous systems of insects. (A review of neuronal arrangements in the visual system and corpora pedunculata.) Verh. Dtsch. Zool. Ges.64, 97–108 (1970b)Google Scholar
  63. Strausfeld, N.J.: The organization of the insect visual system (light microscopy). I. Projections and arrangements of neurons in the lamina ganglionaris of diptera. Z. Zellforsch.121, 377–441 (1971)Google Scholar
  64. Strausfeld, N.J.: Atlas of an Insect Brain. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  65. Strausfeld, N.J., Campos-Ortega, J.A.: The L4 monopolar neuron: a substrate for lateral interaction in the visual system of the fly, Musca domestica. Brain Res.59, 97–117 (1973)Google Scholar
  66. Tisdale, A.D., Nakajima, Y.: Fine structure of synaptic vesicles in two types of nerve terminals in crayfish stretch receptor organs: Influence of fixation methods. J. comp. Neurol.165, 369–386 (1976)Google Scholar
  67. Tranzer, J.P., Richards, J.G.: Ultrastructural cytochemistry of biogenic amines in nervous tissue: Methodologic improvements. J. Histochem. Cytochem.24, 1178–1193 (1976)Google Scholar
  68. Trujillo-Cenoz, O.: Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res.13, 1–33 (1965)Google Scholar
  69. Trujillo-Cenoz, O.: The structural organization of the compound eye in insects. In: Physiology of photoreceptor organs. Handbook of Sensory Physiology, Vol. II/2 (M.G.F. Fuortes, ed.), pp. 5–62. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  70. Wehner, R.: Die Konkurrenz von Sonnenkompass- und Horizontmarken-Orientierung bei der Wüstenameise, Cataglyphis bicolor (Formicidae, Hymenoptera). Verh. Dtsch. Zool. Ges.16, 238–242 (1970)Google Scholar
  71. Wehner, R.: Structure and function of the peripheral visual pathway in hymenopterans. In: Neural principles in vision (F. Zettler, R. Weiler, eds.), pp. 280–333. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  72. Wehner, R., Duelli, P.: The spatial orientation of desert ants, Cataglyphis bicolor, befor sunrise and after sunset. Experientia (Basel)27, 1364–1366 (1971)Google Scholar
  73. Wehner, R., Flatt, I.: The visual orientation of desert ants, Cataglyphis bicolor, by means of terrestrial cues. In: Information processing in the visual systems of arthropods (R. Wehner, ed.), pp. 295–302. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  74. Wehner, R., Toggweiler, F.: Verhaltensphysiologischer Nachweis des Farbensehens bei Cataglyphis bicolor (Hymenoptera, Formicidae). J. comp. Physiol.77, 239–255 (1972)Google Scholar
  75. Weiler, R., Huber, M.: The significance of different eye regions for astromenotactic orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). In: Information processing in the visual systems of arthropods (R. Wehner, ed.), pp. 287–293. Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Eric P. Meyer
    • 1
  1. 1.Zoologishes Institut der UniversitÄt ZürichZürich

Personalised recommendations