Metabolic Brain Disease

, Volume 8, Issue 4, pp 207–215 | Cite as

Region-selective reductions in activities of glutamine synthetase in rat brain following portacaval anastomosis

  • Guylaine Girard
  • Jean-François Giguère
  • Roger F. Butterworth
Original Contribution


Portacaval anastomosis in the rat results in liver atrophy, sustained hyperammonemia and mild encephalopathy. Previous studies have demonstrated region-selective alterations of glutamine and other ammonia-related amino acids in brain following portacaval anastomosis. Ammonia removal by brain relies on glutamine synthesis and the enzyme responsible, glutamine synthetase, has an almost exclusively astrocytic localization. Glutamine synthetase activities were measured using a radioenzymatic assay in homogenates of seven brain regions of rats four weeks after end-to-side portacaval anastomosis. Enzyme activities were significantly reduced in hippocampus (by 25%, p<0.01), in cerebellum (by 29%, p<0.01) and in cerebral cortex (by 14%, p<0.05). Enzyme activities in other brain regions were within normal limits. Region-selective reductions of glutamine synthetase following portacaval anastomosis could result in disruption of neuron-glial metabolic interactions and in a deficit of glutamatergic synaptic regulation. Similar mechanisms could be implicated in the pathogenesis of hepatic encephalopathy accompanying chronic liver disease in humans.

Key words

Ammonia Glutamine synthetase Glutamic acid dehydrogenase Portacaval anastomosis Hepatic Encephalopathy Astrocyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blei A.T., Omary R. and Butterworth R.F. (1992). Animal models of hepatic encephalopathies inNeuromethods, vol. 22: Animal Models of Neurological Disease, II (A. Boulton, G. Baker, R.F. Butterworth, eds.), The Humana press Inc., NJ, pp. 183–222.Google Scholar
  2. Butterworth R.F. (1992). Evidence that hepatic encephalopathy results from a defect of glutamatergic synaptic regulation.Molec. Neuropharmacol. 2:229–232.Google Scholar
  3. Butterworth R.F., Girard G. and Giguère J.F. (1988). Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis.J. Neurochem. 51:486–490.Google Scholar
  4. Butterworth R.F., Giguère J.F., Michaud J., Lavoie J. and Pomier Layrargues G. (1987). Ammonia: Key factor in the pathogenesis of hepatic encephalopathy.Neurochem. Pathol. 6:1–12.Google Scholar
  5. Butterworth R.F., Le O., Lavoie J. and Szerb J.C. (1991). Effect of portacaval anastomosis on electrically-stimulated release of glutamate from rat hippocampal slices.J. Neurochem. 56:1481–1484.Google Scholar
  6. Cooper A.J.L., Mora S.N., Cruz N.F. and Gelbard A.S. (1985). Cerebral ammonia metabolism in hyperammonemic rats.J. Neurochem. 4:1716–1723.Google Scholar
  7. Cremer J.E., Heath D.F., Teal H.M., Woods M.S. and Cavanagh J.B. (1975). Some dynamic aspects of brain metabolism in rats given a portacaval anastomosis.Neuropathol. Appl. Neurobiol. 3:293–311.Google Scholar
  8. Ehrlich M., Plum F. and Duffy T.E. (1980). Blood and brain ammonia concentrations after portacaval anastomosis. Effect of acute ammonia loading”.J. Neurochem. 34:1538–1542.Google Scholar
  9. Filla, A., De Michele G., Brescia-Mora V., Palma V., Di Lauro A., Di Geronimo G. and Campanella G. (1986). Glutamate dehydrogenase in human brain: regional distribution and properties.J. Neurochem. 46:422–424.Google Scholar
  10. Giguère J.F. and Butterworth R.F. (1984). Amino acid changes in regions of CNS in relation to function in experimental portal-sysemic encephalopathy.Neurochem. Res. 9:1307–1319.Google Scholar
  11. Giguère J.F., Besnard A.M., Lavoie J., Pomier Layrargues G. and Butterworth R.F. (1982). Activities of glutamate-related enzymes in autopsied brain tissue from cirrhotic patients with Hepatic Encephalopathy. InHepatic Encephalopathy: Pathophysiology and Treatment (R.F. Butterworth and G. Pomier Layrargues, eds.), Humana Press, Clifton, New Jersey, pp. 435–445.Google Scholar
  12. Giguère J.F., Hamel E. and Butterworth R.F.(1992). Increased densities of binding sites for the “peripheral-type” benzodiazepine receptor ligand [3H] PK11195 in rat brain following portacaval anastomosis.Brain Res. 585:295–298.Google Scholar
  13. Girard G. and Butterworth R.F. (1992). Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle.Dig. Dis. Sci. 37:1121–1126.Google Scholar
  14. Hansson E. (1986). Primary cultures from defined brain areas III. Effects of seeding time on3H-L-glutamate transport and glutamine synthetase activity.Dev. Brain Res. 24:203–209.Google Scholar
  15. Kun E. and Kearney E.B. (1974). Ammonia. InMethods of Enzymatic Analysis (H.V. Berkmeyer, ed.), Academic Press, New York, pp. 1802–1806.Google Scholar
  16. Laursen H., and Diemer N.H. (1980). Morphometry of astrocyte and oligodendrocyte ultrastructure after portacaval anastomosis in the rat.Acta Neuropathol. 51:65–70.Google Scholar
  17. Lavoie J., Giguère J.F., Pomier Layrargues G. and Butterworth R.F. (1987). Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy.Metab. Brain Dis. 2:283–290.Google Scholar
  18. Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275.Google Scholar
  19. Norenberg M.D. (1987). The role of astrocytes in hepatic encephalopathy.Neurochem. Pathol. 6:13–33.Google Scholar
  20. Norenberg M.D. and Martinez-Hernandez A. (1979). Fine structural localization of glutamine synthetase in astrocytes of rat brain.Brain Res. 161:303–310.Google Scholar
  21. Norenberg M.D., Mozes L.W., Papendick R.E. and Norenberg L.O.B. (1985). Effect of ammonia on glutamate, GABA and rubidium uptake by astrocytes.Ann. Neurol 18:149.Google Scholar
  22. Peterson C., Giguère J.F., Cotman C.W. and Butterworth R.F. (1990). Selective loss of N-methyl-D-aspartate sensitive L-3H-glutamate binding sites in rat brain following portacaval anastomosis.J. Neurochem. 55:386–390.Google Scholar
  23. Qureshi I.A., Ratnakumari L. and Butterworth R.F. (1993). Cerebral glutamate synthetase and glutamate dehydrogenase in congenitally hyperammonemic sparse-fur (spf/Y) mice: effect of acetyl-L-carnitine.Adv. Ammonia Metab. and Metab. Nitrogen Exchange (in press)Google Scholar
  24. Ukida M., Morishita H., Morimoto Y., Usui H. and Nagashima H. (1988). Limited glutamine synthesis in brains of dogs with a portacaval anastomosis after15N-ammonium chloride loading. InAdvances in Ammonia Metabolism and Hepatic Encephalopathy (P.B. Soeters, J.H.P. Wilson, A.J. Meijer, E. Holm, eds.), Excerpta Medica, Amsterdam, pp. 433–438.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Guylaine Girard
    • 1
  • Jean-François Giguère
    • 1
  • Roger F. Butterworth
    • 1
  1. 1.Neuroscience Research UnitHopital Saint-Luc (University of Montreal)QuebecCanada

Personalised recommendations