Advertisement

Metabolic Brain Disease

, Volume 7, Issue 1, pp 35–44 | Cite as

CNQX binding to non-NMDA glutamate receptors in canine cerebro-cortical crude synaptosomal membranes: Pharmacological characterization and comparison of binding parameters in dogs with congenital portosystemic encephalopathy and control dogs

  • Jill E. Maddison
  • Wendy E. J. Watson
  • Graham A. R. Johnston
Original Contributions

Abstract

The pharmacological profile and binding characteristics of the non-NMDA antagonist of glutamate receptors [3H]6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), were investigated in triton-washed crude synaptosomal membranes prepared from canine cerebral cortex. [3H]CNQX binding was inhibited by various glutamate agonists and antagonists, the rank order of potency being CNQX>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)=quisqualate=kainate>glutamate. Two binding sites for [3H]CNQX were apparent when non-specific binding (NSB) was defined with unlabelled CNQX. In contrast, when NSB was defined with saturating concentrations of unlabelled AMPA and kainate, only one binding site was identified which corresponded to the high affinity site identified when CNQX was used to define NSB. No physiologically relevant differences were found in binding parameters for [3H]CNQX membranes from dogs with congenital portosystemic encephalopathy (PSE) when compared with control dogs. The affinity constant (Ki of AMPA displacement of [3H]CNQX binding was not significantly different in PSE dogs compared with control dogs. These results suggest that the antagonist site on cortical non-NMDA receptors is not perturbed in dogs with congenital PSE.

Key words

hepatic encephalopathy CNQX receptor glutamate dog, non-NMDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barsky, M.F., Rankin, R.N., Wall W.J., Ghent, C.N., Garcia, B. (1989) Patent ductus venosus: problems in assessment and management.Can. J. Surg. 32: 271–275.Google Scholar
  2. Butterworth, R.F., Lavoie, J., Giguère, J-F., Pomier Layrargues, G., Bergeron, M. (1987) Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy.Neurochem. Path. 6: 131–144.Google Scholar
  3. Ferenci, P., Pappas, S. C., Munson, P.J., Jones, E.A. (1984a) Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit.Hepatology 4: 25–29.Google Scholar
  4. Ferenci, P., Pappas, S. C., Munson, P.J., Henson, K., Jones, E.A. (1984b) Changes in the status of neurotransmitter receptors in a rabbit model of hepatic encephalopathy.Hepatology 4: 186–191.Google Scholar
  5. Giguère, J-F., Besnard, A-M., Fournier, H., Bergeron, M., Girard, G., Butterworth, R.F. (1988) Evidence for a functional imbalance between central GABAergic and glutamatergic neurotransmission in portal-systemic encephalopathy. In Soeters, P. Wilson J.H.P., Meijer A.J., Hohn E. (eds),Advances In Ammonia Metabolism And Hepatic Encephalopathy. Elsevier, Amsterdam, pp. 287–293.Google Scholar
  6. Honoré, T., Davies, S.N., Drejer, J., Fletcher, E.J., Jacobsen, P., Lodge, D., Nielsen, F.E. (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists.Science 241: 701–703.Google Scholar
  7. Honoré, T., Drejer, J., Nielson, E.O., Nielson, M. (1989) Non-NMDA glutamate receptor antagonist3H-CNQX binds with equal affinity to two agonist states of quisqualate receptors.Biochem. Pharmacol. 38: 3207–3212.Google Scholar
  8. Kessler, M., Baudry, M., Lynch, G. (1989) Quinoxaline derivatives are high-affinity antagonists of the NMDA receptor-associated glycine sites.Brain Research 489: 377–382.Google Scholar
  9. Lester, A.J., Quarum, M.L., Parker, J.D., Weber, E., Jahr, C.E. (1989) Interaction of 6-cyano-7-nitroquinoxaline-2,3-dione with the N-methyl-D-aspartate receptor-associated glycine binding site.Mol. Pharmacol. 35: 565–570.Google Scholar
  10. Lowry, C.H., Rosebrough, S. M., Farr, A.L., Randall, R.J. (1951) Protein measurement with folin-phenol reagent.J. Biol. Chem. 193: 265–275.Google Scholar
  11. Maddison, J.E. (1988) Canine congenital portosystemic encephalopathy.Aust. Vet. J. 65: 245–249.Google Scholar
  12. Maddison, J.E., Dodd, P. R., Morrison, M., Farrell, G.C., Johnston, G.A.R. (1988) Plasma GABA concentrations and cerebro-cortical GABA receptor binding and function in dogs with congenital portosystemic encephalopathy. In Soeters, P.B., Wilson, J. H.P., Meijer, A.J., Holm, E. (eds),Advances in Ammonia Metabolism and Hepatic Encephalopathy. Excerpta Medica, Amsterdam, pp. 265–274.Google Scholar
  13. Maddison, J.E., Watson, E.J., Dodd, P.R., Johnston, G.A.R. (1991a) Alterations in [3H]kainate and [3H]AMPA binding in a spontaneous dog model of chronic hepatic encephalopathy.J. Neurochem. 56: 1881–1888.Google Scholar
  14. Maddison, J.E., Watson, E.J., Johnston, G.A.R. (1991b) Cerebellar [3H]kainate and [3H]AMPA binding in dogs with congenital portacaval shunts.Neurochem., Int. 19: 511–515.Google Scholar
  15. McPherson, G.A. (1983) A practical computer-based approach to the analysis of radioligand binding experiments.Computer Prog. Biomed. 17: 107–114.Google Scholar
  16. Munson, P.J., Rodbard, D. (1980) LIGAND: a versatile computerized approach for characterization of ligand binding systems.Anal. Biochem. 107: 220–239.Google Scholar
  17. Nielsen E.Ø., Drejer, J., Cha, J-H.J., Young, A.B., Honoré, T. (1990) Autoradiographic characterization and localization of quisqualate binding sites in rat brain using the antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione:comparison with (R,S)-[3H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites.J. Neurochem. 54: 686–695.Google Scholar
  18. Peterson, C., Giguère, J-F, Cotman, C.W., Butterworth, R.F. (1990) Selective loss of N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain following portacaval anastomosis.J. Neurochem. 55: 386–390.Google Scholar
  19. Raskin, N.H., Bredesen, D., Ehrenfield, W.K., Kerlan, R.K. (1984) Periodic confusion caused by congenital extrahepatic portacaval shunt.Neurology 34: 666–669.Google Scholar
  20. Sladeczek F., Récasens M. and Bockaert J. (1988) A new mechanism for glutamate receptor action: phosphoinositide hydrolysis.Trends Neurosci. 11: 545–549.Google Scholar
  21. Tarter, R.E., Hegedus, A.M. (1984) Neuropsychiatrie sequelae of portal-systemic encephalopathy: a review.Int. J. Neurosci. 24: 203–216.Google Scholar
  22. Walpole, R.E. (1982)Introduction to Statistics, McMillan, New YorkGoogle Scholar
  23. Watanabe, A., Fujiwara, M., Shiota, T., & Tsuji, T. (1988) Amino acid neurotransmitters and their receptors in the brain synaptosomes of acute hepatic failure rats.Biochem. Med. Metab. Biol. 40: 247–252.Google Scholar
  24. Watkins, J.C., Krogsgaard-Larsen, P., Honoré, T. (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists.Trends Pharmacol. Sci. 11: 25–33.Google Scholar
  25. Zimmermann, C., Ferenci, P., Pifl, C., Yurdaydin, C., Ebner, J., Lassmann, H., Roth, E., Hortnagle, H. (1989) Hepatic encephalopathy in thioacetamide-induced acute liver failure in rats: characterization of an improved model and study of amino-acidergic neurotransmission.Hepatology 9: 594–601.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Jill E. Maddison
    • 1
  • Wendy E. J. Watson
    • 1
  • Graham A. R. Johnston
    • 1
  1. 1.Department of PharmacologyThe University of SydneyAustralia

Personalised recommendations