Annals of Global Analysis and Geometry

, Volume 3, Issue 2, pp 233–264 | Cite as

The generalized sine-Gordon equation and its 1-soliton solutions

  • Hubert Gollek
Article

Keywords

Group Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aminov, Yu. A., On immersions of the n-dimensional Lobachevski space into the (2n-1)-dimensional Euclidean space, Dokl. Ak. Nauk SSSR 236(3), 1977Google Scholar
  2. [2]
    Aminov, Yu. A., Isometric immersions of regions of the n-dimensional Lobachevski space into the (2n-1)-dimensional Euclidean space, Mat. Sbornik, vol. 111(153) N° 3, 1980Google Scholar
  3. [3]
    Aminov, Yu. A., A multidimensional analog of the sine- Gordon equation and the motion of a rigid body, Dokl. Ak. Nauk SSSR, 264(5), 1982Google Scholar
  4. [4]
    Helgason, S., Differential geometry and symmetric spaces, Acad. Press New York and London, 1962Google Scholar
  5. [5]
    Moore, J. D., Isometric immersions of space forms into space forms, Pac. J. Math., 40 (1972)Google Scholar
  6. [6]
    Postnikov, M. M., Lectures on geometry, Semester V, Moskva 1982 (in russian)Google Scholar
  7. [7]
    Tenenblat, K. and Terng, Ch. L., Bäcklund's theorem for n-dimensional submanifolds of R2n−1, Ann. of Math. 111 (1980)Google Scholar
  8. [8]
    Terng, Ch. L., A higher dimensional generalization of the “sine-Gordon” equation and its soliton theory. Ann. of Math. 111 (1980)Google Scholar

Copyright information

© VEB Deutscher Verlag der Wissenshaften 1985

Authors and Affiliations

  • Hubert Gollek
    • 1
  1. 1.Sektion Mathematik, Bereich GeometrieHumboldt-Universität zu BerlinBerlin

Personalised recommendations