Skip to main content
Log in

Cyclic nucleotides and retinal cones

  • A Minireview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Besharse, J. C., Dunis, D. A., and Burnside, B. 1982. Effects of cyclic adenosine 3′5′-monophosphate on photoreceptor disc shedding and retinomotor movement. J. Gen. Physiol. 79:775–790.

    Google Scholar 

  2. Berger, S. J., DeVries, G. W., Carter, J. C., Schulz, D. W., Passonneau, P. N., Lowry, O. H., and Ferrendelli, J. A. 1980. The distribution of the components of the cyclic GMP cycle in the retina. J. Biol. Chem. 255:3128–3133.

    Google Scholar 

  3. Bitensky, M. W., Gorman, R. E., and Miller, W. H. 1971. Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc. Natl. Acad. Sci. USA. 68:561–562.

    Google Scholar 

  4. Bitensky, M. W., Miki, N., Keirns, J. J., Keirns, M., Baraban, J. M., Freeman, J., Wheeler, M. A., Lacy, J., and Marcus, F. R. 1975. Activation of photoreceptor disk membrane phosphodiesterase by light and ATP. Advances in Cyclic Nucleotide Research, Vol. 5:213–240.

    Google Scholar 

  5. Blazynski, C., and Cohen, A. I. 1986. Rapid decline in cyclic GMP of rod outer segments of intact frog photoreceptors after illumination. J. Biol. Chem., Vol. 261:14142–14147.

    Google Scholar 

  6. Burnside, B., Evans, M., Fletcher, R. T., and Chader, G. J. 1982. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3′,5′-monophosphate. J. Gen. Physiol. 79:759–774.

    Google Scholar 

  7. Burnside, B., and Nagle, B. 1983. Retinomotor movements of photoreceptors and retinal pigment epithelium: Mechanisms and regulation. Pages 67–109, in Osborne, N., and Chader, G. (eds.), Progress in retinal research, Vol. 2, Pergamon Press, New York.

    Google Scholar 

  8. Cobbs, W. H., and Pugh, E. N., Jr. 1985a. Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Nature 313:585–587.

    Google Scholar 

  9. Cobbs, W. H., Barkdole, A. E., III, and Pugh, E. N., Jr. 1985b. Cyclic GMP increases photocurrent and light sensitivity of retinal cones. Nature 317:64–66.

    Google Scholar 

  10. Cote, R. H., Biernbaum, M. S., Nicol, G. D., and Bownds, M. D. 1984. Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors. J. Biol. Chem. 259:9635–9641.

    Google Scholar 

  11. DeVries, G. W., Cohen, A. I., Hall, I. A., and Ferrendelli, J. A. 1978. Cyclic nucleotide levels in normal and biologically fractionated mouse retina: Effects of light and dark adaptation. J. Neurochem. 31:1345–1351.

    Google Scholar 

  12. DeVries, G. W., Cohen, A. I., Lowry, O. H., and Ferrendelli, J. A. 1979. Cyclic nucleotides in the cone-dominant ground squirrel retina. Exp. Eye Res. 29:315–321.

    Google Scholar 

  13. DeVries, G. W., Cohen, A. I., Lowry, O. H., and Ferrendelli, J. A. 1982a. Cyclic nucleotide levels in light- and darkadapted ground squirrel whole eyes. Vision Res. 22:1237–1240.

    Google Scholar 

  14. DeVries, G. W., Campau, K. M., and Ferrendelli, J. A. 1982b. Adenylate cyclases in the vertebrate retina: Distribution and characteristics in rabbit and ground squirrel. J. Neurochem. 38:759–765.

    Google Scholar 

  15. Eckmiller, M. S., and Burnside, B. 1983. Light-induced photoreceptor shedding in teleost retina blocked by dibutyryl cyclic AMP. Invest. Ophthalmol. Vis. Sci. 24:1328–1332.

    Google Scholar 

  16. Farber, D. B., and Lolley, R. N. 1978. cAMP and cGMP content of cone-dominant retinas of ground squirrel. Invest. Ophth. Vis. Sci. (Suppl.) 17: p. 255.

    Google Scholar 

  17. Farber, D. B., Chase, D. G., and Lolley, R. N. 1980. Cyclic nucleotides in rod- and cone-dominant retinas. Neurochem. 1:327–336.

    Google Scholar 

  18. Farber, D. B., Souza, D. W., Chase, D. G., and Lolley, R. N. 1981. Cyclic nucleotides of cone-dominant retinas: Reduction of cAMP levels by light and by cone degeneration. Invest. Ophthalmol. Vis. Sci. 20:24–31.

    Google Scholar 

  19. Farber, D. B., Souza, D. W., and Lolley, R. N. 1982. Cyclic AMP content of a cone-dominant retina: Time course of light reduction and dark recovery, in vivo. Soc. Neurosci. Abst. 8:342.

    Google Scholar 

  20. Farber, D. B., Souza, D. W., and Chase, D. G. 1983. Cone visual cell degeneration in ground squirrel retina: Disruption of morphology and cyclic nucleotide metabolism by iodoacetic acid. Invest. Ophthalmol. Vis. Sci. 24:1236–1249.

    Google Scholar 

  21. Farber, D. B., Flannery, J. G., Lolley, R. N., and Bok, D. 1985. Distribution patterns of photoreceptors, protein, and cyclic nucleotides in the human retina. Invest. Ophthalmol. Vis. Sci. 26:1558–1568.

    Google Scholar 

  22. Farber, D. B., and Bok, D. 1985. Light-adapted cGMP-phosphodiesterase is absent from cone photoreceptors. Invest. Ophthalmol. Vis. Sci. (Suppl.) 26: p. 334.

    Google Scholar 

  23. Ferrendelli, J. A., DeVries, G. W., Cohen, A. I., and Lowry, O. H. 1980. Localization and roles of cyclic nucleotide systems in the retina. Neurochemistry 1:311–326.

    Google Scholar 

  24. Fesenko, E. E., Kolesnikov, S. S., and Lyubarsky, A. L. 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313.

    Google Scholar 

  25. Fung, B. K. K., Hurley, J. B., and Stryer, L. 1981. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl. Acad. Sci. U.S.A. 78:152–156.

    Google Scholar 

  26. Grunwald, G. B., Gierschik, P., Nirenberg, M., and Spiegel, A. 1986. Detection of α-transducin in retinal rods but not cones. Science 231:856–859.

    Google Scholar 

  27. Haynes, L., and Yau, K.,-W. 1985. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317:61–64.

    Google Scholar 

  28. Hurwitz, R. L., Bunt-Milam, A. H., Chang, M. L., and Beavo, J. A. 1985. cGMP phosphodiesterase in rod and cone outer segments of the retina. J. Biol. Chem. 260:568–573.

    Google Scholar 

  29. Khoury, S. A., and Farber, D. B. 1981. Adenylate and guanylate cyclases of ground squirrel retina. Invest. Ophth. Vis. Sci. 20:(Suppl.) p. 210.

    Google Scholar 

  30. Khoury, S. A., and Farber, D. B. 1982. Comparative characterization and localization of retinal adenylate and guanylate cyclases. Invest. Ophth. Vis. Sci. 21(Suppl.) p. 188.

    Google Scholar 

  31. Korenbrot, J. I. 1985. Role of intracellular messengers in signal transduction in retinal rods. Progress in Retinal Research 4:115–136.

    Google Scholar 

  32. Kuhn, H. 1984. Interactions between photoexcited rhodopsin and light-adapted enzymes in rods. Progress in Retinal Research 3:123–156.

    Google Scholar 

  33. Lerea, C. L., Somers, D. E., Hurley, J. B., Klock, I. B., Bunt-Milam, A. H. 1986. Indentification of specific α subunits in retinal rod and cone photoreceptors. Science 234:77–80.

    Google Scholar 

  34. Lowry, O. H., and Passonneau, J. 1972. A flexible system of enzymatic analysis. Academic (New York), 291 pages.

    Google Scholar 

  35. Miki, N., Keirns, J. J., Marcus, F. R., Freeman, J., and Bitensky, M. W. 1973. Regulation of cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc. Natl. Acad. Sci. U.S.A. 70:3820–3824.

    Google Scholar 

  36. Miki, N., Baraban, J. M., Keirns, J. J., Boyce, J. J., and Bitensky, M. W. 1975. Purification and properties of the light-adapted cyclic nucleotide phosphodiesterase of rod outer segments. J. Biol. Chem. 250:6320–6327.

    Google Scholar 

  37. Miller, W. H., and Nicol, G. D. 1979. Evidence that cyclic GMP regulates membrane potential in rod photoreceptors. Nature 280:64–66.

    Google Scholar 

  38. Miller, W. H. 1982. Physiological evidence that light-mediated decrease in cyclic GMP is an intermediary process in retinal rod transmission. J. Gen. Physiol. 80:103–123.

    Google Scholar 

  39. Mitzel, D. L., Hall, I. A., DeVries, G. W., Cohen, A. I., and Ferrendelli, J. A. 1978. Comparison of cyclic nucleotide and energy metabolism of intact mouse retina in situ and in vitro. Exp. Eye Res. 27:27–37.

    Google Scholar 

  40. Newsome, D. A., Fletcher, R. T., and Chader, G. J. 1980. Cyclic nucleotides vary by area in the retina and pigmented epithelium of the human and monkey. Invest. Ophthalmol. Vis. Sci. 19:864–869.

    Google Scholar 

  41. Nicol, G. D., and Miller, W. H. 1978. Cyclic GMP injected into retinal rod outer segments increases latency and amplitude of response to illumination. Proc. Natl. Acad. Sci. U.S.A. 75:5217–5220.

    Google Scholar 

  42. Orr, H. T., Lowry, O. H., Cohen, A. I., and Ferrendelli, J. A. 1976. Distribution of 3′,-5′-cyclic AMP and 3′,-5′-cyclic GMP in rabbit retina in vivo: Selective effects of dark and light adaptation and ischemia. Proc. Natl. Acad. Sci. U.S.A. 73:4442–4445.

    Google Scholar 

  43. Waloga, G. 1983. Effects of calcium and guanosine-3′,∶5′-cyclic-monophosphoric acid on receptor potentials of toad rods. J. Physiol. 341:341–357.

    Google Scholar 

  44. Yau, K.-W., and Nakatani, K. 1985. Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature 317:252–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue dedicated to Dr. O. H. Lowry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A.I. Cyclic nucleotides and retinal cones. Neurochem Res 12, 501–505 (1987). https://doi.org/10.1007/BF01000233

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01000233

Keywords

Navigation