Neurochemical Research

, Volume 14, Issue 4, pp 317–320 | Cite as

The effect of caffeine on some mouse brain free amino acid levels

  • Isabel J. Wajda
  • Miriam Banay-Schwartz
  • Abel Lajtha
Original Articles


Changes in free amino acids were examined in the central nervous system of mice treated with caffeine for three weeks. Caffeine was administered in the drinking water, and at the end of three weeks the level of caffeine in the cerebral cortex was 113±19 μg/g. When amino acid levels in cerebral hemispheres, midbrain, pons and medulla, and cerebellum were measured a significant increase in glutamine levels was found in all four regions. Glycine, alanine, serine, threonine, and GABA were significantly reduced in some regions. Caffeine appears to alter some of the metabolic or transport processes regulating amino acid pools in the brain. The decrease of GABA found in pons and medulla may contribute to the observed increase in reflex excitability after caffeine.

Key Words

Caffeine amino acids GABA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Snyder, S. H., and Sklar, P. 1984. Behavioral and molecular actions of caffeine: Focus on adenosine. J. Psychiat. Res. 18:91–106.Google Scholar
  2. 2.
    Snyder, S. H. 1981. Adenosine receptors and the action of methylxanthines. Trends Neurosci. 4:242–244.Google Scholar
  3. 3.
    Dunwiddie, T. W., and Worth, T. 1982. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J. Pharmacol. Exp. Ther. 200:70–76.Google Scholar
  4. 4.
    Daly, J. W., Butts-Lamb, P., and Padgett, W. 1983. Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines. Cell. Mol. Neurobiol. 3:69–80.Google Scholar
  5. 5.
    Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W. 1981. Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. U.S.A. 78:3260–3264.Google Scholar
  6. 6.
    Boulenger, J. P., Patel, J., Post, R. M., Parma, A. M., and Marangos, P. J. 1983. Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 32:1135–1142.Google Scholar
  7. 7.
    Harms, H. H., Wardeh, G., and Mulder, A. H. 1979. Effects of adenosine on depolarization-induced release of various radiolabeled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18:577–580.Google Scholar
  8. 8.
    Jackish, R., Fehr, R., and Hertting, G. 1985. Adenosine: An endogenous modulater of hippocampal noradrenaline release. Neuropharmacology 24:499–507.Google Scholar
  9. 9.
    Bekairi, A. M., Abulaban, F. S., Parmar, N. S., Tariq, M., and Ageel, A. M. 1987. Effect of ethanol and/or caffeine administration on the plasma amino acids and other biochemical parameters in male Wistar rats. Res. Commun. Subst. Abuse 7:142–152.Google Scholar
  10. 10.
    Dunlop, D. S., Neidle, A., McHale, D., Dunlop, D. M., and Lajtha, A. 1986. The presence of free D-aspartic acid in rodents and man. Biochem. Biophys. Res. Commun. 141:27–32.Google Scholar
  11. 11.
    Cohen, G. L., Cheng, C., Henry, G. P., and Chan, Y.-L. 1978. G.L.C. determination of caffeine in plasma using alkali flame detection. J. Pharmaceut. Sci. 67:1093–1095.Google Scholar
  12. 12.
    Banay-Schwartz, M., Giuffrida, A. M. De Guzman, T., Sershen, H., and Lajtha, A. 1979. Effect of undernutrition on cerebral protein metabolism. Exp. Neurol. 65:157–168.Google Scholar
  13. 13.
    Lajtha, A. 1975. Alterations in the amino acid content of the brain. In Tower, D. B., and Brady, R. O. (eds.), The Nervous System, Vol. 1, Raven Press, New York.Google Scholar
  14. 14.
    Toth, J., and Lajtha, A. 1980. Effect of protein-free diet on the uptake of amino acids by the brain “in vivo”. Exp. Neurol. 68:443–452.Google Scholar
  15. 15.
    Ciesielski, L., Simler, S., and Mandel, P. 1980. Effect of repeated convulsive seizures on brain GABA levels. Neurochem. Res. 6:267–273.Google Scholar
  16. 16.
    Norris, D. K., Murphy, R. A., and Chung, S. H. 1985. Alteration of amino acid metabolism in epileptogenic mice by elevation of brain pyridoxal phosphate. J. Neurochem. 44:1403–1410.Google Scholar
  17. 17.
    van Gelder, N. M. 1986. Contribution of basic neurochemistry toward a novel concept of epilepsy. Neurochem. Res. 12:111–119.Google Scholar
  18. 18.
    Allen, I. C., Grieve, A., and Griffiths, R. 1986. Differential changes in the content of amino acid neurotransmitters in discrete regions of the rat brain prior to the onset and during the course of homocysteine-induced seizures. J. Neurochem. 46:1582–1592.Google Scholar
  19. 19.
    Ribak, C. E., Byun, M. Y., Ruiz, G. T., and Reiffenstein, R. J. 1988. Increased levels of amino acid neurotransmitters in the inferior colliculus of the genetically epilepsy-prone rat. Epilepsy Res. 2:9–13.Google Scholar
  20. 20.
    Chu, N.-S. 1981. Caffeine and aminophylline-induced seizures. Epilepsia. 22:85–94.Google Scholar
  21. 21.
    Loo, H. Y., Potempska, A., and Wisniewski, H. M. 1985. A biochemical explanation of phenyl acetate neurotoxicity in experimental phenylketonuria. J. Neurochem. 45:1596–1600.Google Scholar
  22. 22.
    McKean, C. M. 1972. The effects of high phenylalanina concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res. 47:469–476.Google Scholar
  23. 23.
    Perry, T. L. 1987. Brain glutamate deficiency in amyotropic lateral sclerosis. Neurology 37:1845–1848.Google Scholar
  24. 24.
    Toth, J., and Lajtha, A. 1981. Drug-induced changes in the composition of the cerebral free amino acid pool. Neurochem. Res. 6:3–11.Google Scholar
  25. 25.
    Toth, J., and Lajtha, A. 1984. Effect of chronic ethanol administration on brain protein breakdown in mice in vivo. Subst. Alc. Actions Misuse. 5:175–183.Google Scholar
  26. 26.
    Himwich, W. A., and Agrawal, H. C. 1969. Amino acids. Pages 33–48,in Abel Lajtha (ed), Handbook of Neurochemistry, Plenum Press, N.Y..Google Scholar
  27. 27.
    Perry, T. L. 1982. Cerebral amino acid pools. In: Handbook of Neurochemistry, Abel Lajtha (ed.), Vol. 1, Plenum Press, N.Y., pp. 151–180.Google Scholar
  28. 28.
    Reith, M.E.A., Sershen, H., and Lajtha, A. 1987. Effects of caffeine on monoaminergic system in mouse brain. Acta Biochim. Hung. 22:149–163.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Isabel J. Wajda
    • 1
  • Miriam Banay-Schwartz
    • 1
  • Abel Lajtha
    • 1
  1. 1.Center for NeurochemistryThe Nathan S. Kline Institute for Psychiatric ResearchNew York

Personalised recommendations