Advertisement

Übertragungsverhalten des motorischen Systems der Hand bei elektrischer Anregung und seine Bedeutung für den Krafttremor

  • Peter Zipp
Article

Zusammenfassung

Basierend auf der Struktur und auf dem bekannten Übertragungsverhalten der Einzelelemente des motorischen Systems des Menschen wird ein regelungs-technisches Modell des motorischen Systems für den Sonderfall der isometrischen Muskelkontraktion entwickelt. Das Übertragungsverhalten des Modells wird mit dem durch elektrische Muskelreizung experimentell ermittelten Frequenzgang des motorischen Systems verglichen. Es wird gezeigt, daß unter bestimmten Bedingungen dem Krafttremor ähnliche Schwingungen auftreten.

Schlüsselwörter

Frequenzgang Muskelreizung Tremormodell Krafttremor 

Transfer characteristic of the motor system of the hand obtained by electrical stimulation and its bearing on force tremor

Abstract

Pulse duration modulated signals were used to stimulate the extensor muscles of the hand. From this and from the isometric tension responses the frequency response of the human motor system was obtained. From the transfer characteristics of the components of the motor system which were taken from literature the frequency response of a closed-loop circuit model could be calculated. The theoretical frequency response was compared to the observed data. With increasing loop gain the model would show the characteristics of a filter tuned to the frequency of force-tremors.

Key words

Frequency response Electrical stimulation of muscle Tremor model Force-tremor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbott, B. C., Ritchie, J. M.: The onset of shortening in striated muscle. J. Physiol. (Lond.)113, 336 (1951)Google Scholar
  2. Börner, G.: Untersuchung über den Einfluß der Ermüdung auf den Tremor. IAD-Studienarbeit Nr. 143 (1971)Google Scholar
  3. Chrochetiere, W. J.: Electrical stimulation of skeletal muscle: A study of muscle as an actuator. Med. biol. Engng5, 111–125 (1967)Google Scholar
  4. Coggshall, J. C., Bekey, G. A.: EMG — Force dynamics in human skeletal muscle. Med. biol. Engng8, 265–270 (1970)Google Scholar
  5. Corser, T.: Temporal discrepancies in the electromyographic study of rapid movements. Ergonomics17, 389–400 (1974)Google Scholar
  6. Crowe, A.: A mechanical model of the mammalian muscle spindle. J. theor. Biol.21, 21–41 (1968)Google Scholar
  7. Crowe, A., Matthews, P. B. C.: The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of the muscle spindles. J. Physiol. (Lond.)174, 109–131 (1964)Google Scholar
  8. Dijkstra, Sj., Denier van der Gon, J. J.: A simplified sliding — filament muscle model for simulating purposes. Kybernetik12, 94–101 (1973)Google Scholar
  9. Fox, J. R., Randall, J. E.: Relationship between forearm tremor and the biceps electromyogram. J. appl. Physiol.29, 103–108 (1970)Google Scholar
  10. Hamoen, A. M.: Über das Wesen des physiologischen Tremors der Hand. Psychiat. Neurol. Neurochir. (Amst.)65, 109–116 (1962)Google Scholar
  11. Hopf, H. Ch.: Das Elektromyogramm bei Nervenreizung. Fortschr. Neurol. Psychiat.31, 585–616 (1963)Google Scholar
  12. Houk, J., Henneman, E.: Responses of golgi tendon organs to active contractions of the soleus muscle of the cat. J. Neurophysiol.30, 466–481 (1967)Google Scholar
  13. Houk, J. C., Singer, J. J., Goldman, M. R.: An evaluation of length and force feedback to soleus muscles of decerebrate cats. J. Neurophysiol.33, 784–811 (1970)Google Scholar
  14. Houk, J., Stark, L.: An analytical model of a muscle spindle receptor for simulation of motor coordination. Quart. Prog. Rept., Research Laboratory of Electronics, M.I.T.66, 384–389 (1962)Google Scholar
  15. Laurig, W.: Elektromyographie als arbeitswissenschaftliche Untersuchungsmethode zur Beurteilung von statischer Muskelarbeit. Berlin-Köln-Frankfurt: Beuth-Vertrieb 1970Google Scholar
  16. Linn, K. O.: Untersuchung des Kraftverlaufs bei Willkürbewegungen. Dissertation, Universität Fridericiana, Karlsruhe (1974)Google Scholar
  17. Lippold, O. C. J.: Oscillation in the stretch reflex arc and the origin of the rhythmical 8–12 c/s component of physiological tremor. J. Physiol. (Lond.)206, 359–382 (1970)Google Scholar
  18. Lippold, O. C. J., Redfearn, J. W. T., Vuco, J.: The electromyography of fatigue. Ergonomics3, 121–131 (1960)Google Scholar
  19. Oppelt, W.: Kleines Handbuch technischer Regelvorgänge, 4. Aufl. Weinheim (Bergstr.): Verlag Chemie 1964Google Scholar
  20. Partridge, L. D.: Modifications of neural output signals by muscles: a frequency response study. J. appl. Physiol.20, 150–156 (1965)Google Scholar
  21. Partridge, L. D.: Signal-handling characteristics of load-moving skeletal muscle. Amer. J. Physiol.210, 1178–1191 (1966)Google Scholar
  22. Poppele, R. E., Bowman, R. J.: Quantitative description of linear behavior of mammalian muscle spindles. J. Neurophysiol.33, 59–72 (1970)Google Scholar
  23. Rau, G.: Measurements and modelling on the nature of physiological tremor. Vortrags-manuskript, 10. Ann. Conference on Manual Control. Ohio, USA: Wright-Patterson AFB 1974Google Scholar
  24. Rosenthal, N. P., McKean, T. A., Roberts, W. J., Terzuolo, C. A.: Frequency analysis of stretch reflex and its main subsystems in triceps surae muscle of the cat. J. Neurophysiol.33, 713–749 (1970)Google Scholar
  25. Rudjord, T.: A second order mechanical model of muscle spindle primary endings. Kybernetik6, 205–213 (1970)Google Scholar
  26. Sälzer, M.: Tremoruntersuchungen als Methode in der Arbeitswissenschaft. Berlin-Köln-Frankfurt: Beuth-Vertrieb 1973Google Scholar
  27. Sälzer, M.: Modell zur Beschreibung des Tremors. Europ. J. appl. Physiol.34, 19–31 (1975)Google Scholar
  28. Stiles, R. N., Randall, J. E.: Mechanical factors in human tremor frequency. J. appl. Physiol.23, 324–330 (1967)Google Scholar
  29. Welfonder, E.: Kennwertermittlung an gestörten Regelstrecken mittels Korrelation und periodischen Testsignals. Fortschrittsber. VDI, Reihe 8, Nr. 4 (1966)Google Scholar
  30. Wilson, D. M., Larimer, J. L.: The catch property of ordinary muscle. Proc. nat. Acad. Sci. (Wash.)61, 909–916 (1968)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Peter Zipp
    • 1
  1. 1.Institut für Arbeitswissenschaft der Technischen HochschuleDarmstadt

Personalised recommendations