Skip to main content
Log in

Perspectives on zinc finger protein function and evolution - an update

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Complexity is one of the hallmarks that applies to C2H2 type zinc finger proteins (ZFPs). Structurally distinct clusters of zinc finger modules define an extremely large superfamily of nucleic acid binding proteins with several hundred, perhaps thousands of different members in vertebrates. Recent discoveries have provided new insights into the biochemistry of RNA and DNA recognition, into ZFP evolution and genomic organization, and also into basic aspects of their biological function. However, as much as we have learned, other fundamental questions about ZFP function remain highly enigmatic. This essay is meant to define what we personally feel are important questions, rather than trying to provide a comprehensive, encyclopaedic review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavletich NP & Pabo CO (1991) Science 252: 809–817

    Google Scholar 

  2. Nardelli J, Gibson TJ, Vesque C & Charnay P (1991) Nature 349: 175–178

    Google Scholar 

  3. Desjarlais JR & Berg JP (1993) Proc. Natl. Acad. Sci. USA 90: 2256–2260

    Google Scholar 

  4. Jacobs GH (1992) EMBO J. 11: 4507–4517

    Google Scholar 

  5. Pavletich NP & Pabo CO (1993) Science 261: 1701–1707

    Google Scholar 

  6. Fairall L, Schwabe JWR, Chapman L, Finch JT & Rhodes D (1993) Nature 366: 483–487

    Google Scholar 

  7. Joho KE, Darby MK, Crawford ET & Brown DD (1990) Cell 61: 294–300

    Google Scholar 

  8. Desjarlais JR & Berg JP (1992) Proc. Natl. Acad. Sci. USA 89: 7345–7349

    Google Scholar 

  9. Rehar EJ & Pabo CO 263: 671–673

  10. Picard B & Wegnez M (1979) Proc. Natl. Acad. Sci. USA 76: 241–245

    Google Scholar 

  11. Pelham HRB & Brown DD (1980) Proc. Natl. Acad. Sci. USA 77: 4170–4174

    Google Scholar 

  12. Honda BM & Roeder RG (1980) Cell 22: 119–126

    Google Scholar 

  13. Guddat M, Bakken AH & Pieler T (1990) Cell 60: 619–628

    Google Scholar 

  14. Theunissen O, Rudt F, Guddat U, Mentzel H & Pieler T (1992) Cell 71: 679–690

    Google Scholar 

  15. Clemens KR, Wolf V, McBryant SJ, Zhang P, Wright PE, Gottesfeld JM (1993) Science 260: 530–533

    Google Scholar 

  16. You Q, Baudin F & Romaniuk PJ (1991) Biochem 30: 2495–2500

    Google Scholar 

  17. Theunissen O & Pieler T (1994) in preparation

  18. Knöchel W, Pöting A, Köster M, El-Baradi T, Nietfeld W, Bouwmeester T & Pieler T (1989) Proc. Natl. Sci. USA 86: 6097–6100

    Google Scholar 

  19. Klocke B, Köster M, Hille S, Bouwmeester T, Böhm S, Pieler T & Knöchel W (1994) Biochimica et Biophysica Acta 1217: 81–89

    Google Scholar 

  20. Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O & Martial JA (1991) Proc. Natl. Acad. Sci. USA 88: 3608–3612

    Google Scholar 

  21. Numoto M, Niwa O, Kaplan J, Wong K-K, Merrel K, Kamiya K, Yanagihara K & Calame K (1993) Nucleic Acids Res 21: 3767–3775

    Google Scholar 

  22. Witzgall R, O'Leary E, Gessner R, Onelette AJ, Bonventre JV (1993) Mol. Cell. Biol. 13: 1933–1942

    Google Scholar 

  23. Bellefroid EJ, Marine J-C, Ried T, Lecocq PJ, Rivière M, Amemiya C, Poncelet DA, Coulie PG, deJong P, Szpirer C, Ward DC & Martial JA (1993) EMBO J. 12: 1363–1374

    Google Scholar 

  24. Nietfeld W, Conrad S, van Wijk I, Giltay R, Bouwmeester T, Knöchel W & Pieler T (1993) J. Mol. Biol. 230: 400–412

    Google Scholar 

  25. Bellefroid EJ, Marine J-C, Matera AG, Desai T, Desai T, Bourguignon C, Healey K, Bray-Ward P, Ihle J & Ward DC (1994) submitted

  26. Schäfer U, Rausch O, Bouwmeester T & Pieler T (1994) submitted

  27. Parkhurst SM, Harrison DA, Remington MP, Spana C, Kelly RL, Coyne RS & Corces VG (1988) Genes and Dev 2: 1205–1215

    Google Scholar 

  28. Roseman RR, Pirrotta VA & Geyer PK (1993) EMBO J. 12: 435–442

    Google Scholar 

  29. Tso JY, VanDenBerg D & Kom LD (1986) Nucleic Acids Res. 14: 2187–2200

    Google Scholar 

  30. Gessler M, König A & Bruns GAP (1992) Genomics 12: 807–812

    Google Scholar 

  31. Brickmore WA, Oghene K, Little MH, Seawright A, Van Heyningen V & Hastie ND (1992) Science 257: 235–237

    Google Scholar 

  32. Kinzler KW, Ruppert JM, Bigner SH & Vogelstein B (1988) Nature 332: 371–374

    Google Scholar 

  33. Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao F-T, Law ML, Seuanez HN, O'Brian SJ & Vogelstein B (1988) Mol. Cell. Biol. 8: 3104–3113

    Google Scholar 

  34. Kinzler KW & Vogelstein B (1990) Mol. Cell. Biol. 10: 634–642

    Google Scholar 

  35. Zarkower D & Hodgkin J (1992) Cell 70: 237–249

    Google Scholar 

  36. Orenic TV, Slusarski DC, Kroll KL & Holmgren RA (1990) Genes and Dev. 4: 1053–1067

    Google Scholar 

  37. Vortkamp A, Gessler M & Grzeschik K-H (1991) Nature 352: 539–540

    Google Scholar 

  38. Schimmang T, Lemaistre M, Vortkamp A & Rüther U (1992) Development 116: 799–804

    Google Scholar 

  39. Chavrier P, Zerial M, Lemaire P, Almendral J, Brave R & Chamay P (1988) EMBO J. 7: 29–35

    Google Scholar 

  40. Josephs LJ, Lebean MM, Jamieson GA, Acharya S, Shows TB, Rowley J & Sukhatme VP (1988) Proc. Natl. Acad. Sci. USA 85: 7164–7168

    Google Scholar 

  41. Nieto M-A, Bradley LC & Wilkinson DG (1991) Development (Suppl.) 59–62

  42. Bradley LC, Snape A, Bhatt S & Wilkinson DG (1992) Med. Dev. 40: 73–84

    Google Scholar 

  43. Oxtoby E & Jowett T (1993) Nucleic Acids Res. 21: 1087–1095

    Google Scholar 

  44. Wilkinson DG, Bhatt S, Chavrier P, Brave R & Chamay P (1989) Nature 337: 461–465

    Google Scholar 

  45. Swiatek PJ & Gridley T (1993) Genes and Dev. 7: 2071–2084

    Google Scholar 

  46. Schneider-Maunoury S, Topilko P, Seitanidon T, Levi G, Cohen-Tannoudji M, Pourin S, Babinet C & Chamay P (1993) Cell 75: 1199–1214

    Google Scholar 

  47. Sham MH, Vesque C, Nouchev S, Marshall H, Frain M, Das-Gupta R, Whiting J, Wilkinson D, Chamay P & Krumlauf R (1993) Cell 72: 183–196

    Google Scholar 

  48. Nguyen HQ, Hoffmann-Liebermann B & Liebermann DA (1993) Cell 72: 197–209

    Google Scholar 

  49. Call KM, Glaser T, Ito CY, Bückler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C & Housman DE (1990) Cell 60: 509–520

    Google Scholar 

  50. Rauscher FJ, Morris JF, Tournay OE, Cook DM & Curran T (1990) Science 250: 1259–1262

    Google Scholar 

  51. Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP & Rauscher FJ (1991) Science 253: 1550–1553

    Google Scholar 

  52. Van Heyningen V & Hastie ND (1992) TIG 8: 16–21

    Google Scholar 

  53. Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND & Bard JBL (1992) Mech. Dev. 40: 85–97

    Google Scholar 

  54. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D & Jaenisch R (1993) Cell 74: 679–691

    Google Scholar 

  55. Kadonaga JT, Carner KR, Masiarz FR & Tijan R (1987) Cell 5: 1079–1090

    Google Scholar 

  56. Saffer JD, Jackson SP & Annarella MB (1991) Mol. Cell. Biol. 11: 2189–2199

    Google Scholar 

  57. Kingsley C & Winoto A (1992) Mol. Cell. Biol. 12: 4251–4261

    Google Scholar 

  58. Hagen G, Müller S, Beato M & Suske G (1992) Nucleic Acids Res. 20: 5519–5525

    Google Scholar 

  59. Zhu H, Nguyen VTB, Brown AB, Pourhosseini A, Garcia AV, van Bilsen A & Chien KR (1993) Mol. Cell. Biol. 13: 4432–4444

    Google Scholar 

  60. Wimmer EA, Jäckle H, Pfeifle C & Cohen SM (1993) Nature 366: 690–694

    Google Scholar 

  61. Imataka H, Sogaura K, Yasumoto K-I, Kikuchi Y, Sasano K, Kobayashi A, Hayami M & Fujii-Kuriyama Y (1992) EMBO J. 11: 3663–3671

    Google Scholar 

  62. Suggs SV, Katzowitz JL, Tsai-Morris C & Sukhatme VP (1990) Nucleic Acids Res. 18: 4283

    Google Scholar 

  63. Wright JJ, Günter KC, Mitsuya H, Irving SG, Kelly K & Siebenlist U (1990) Science 248: 588–591

    Google Scholar 

  64. Sukhatme VP, Cao X, Chang LC, Tsai-Morris C-H, Stamenkovich PC, Ferreira CP, Cohen DR, Edward SA, Shows TB, Currau T, Le Bean MM & Adamson ED (1988) Cell 53: 37–43

    Google Scholar 

  65. Milbrandt J (1987) Science 238: 797–799

    Google Scholar 

  66. Joseph LJ, Le Bean M, Jamieson GA, Acharya S, Shows TB, Rowley JD & Sukhatme VP (1988) Proc. Natl. Acad. Sci. USA 85: 7164–7168

    Google Scholar 

  67. Bradley LC, Suape A, Bhatt S & Wilkinson D (1992) Med. Dev. 40: 73–83

    Google Scholar 

  68. Patwardhan S, Gashler A, Siegel MG, Chang LC, Joseph LJ, Shows TB, Le Bean MM & Sukhatme UP (1991) Oncogene 6: 917–928

    Google Scholar 

  69. Müller HJ, Skerka C, Bialonski A & Zipfel PF (1991) Proc. Natl. Acad. Sci. USA 88: 10079–10083

    Google Scholar 

  70. Crosby SD, Puetz JJ, Simburger KS, Fahrner TJ & Milbrandt J (1991) Mol. Cell. Biol. 11: 3835–3841

    Google Scholar 

  71. Buckler AJ, Pelletier J, Haber DA, Glaser T & Housman DE (1991) Mol. Cell. Biol. 11: 1707–1712

    Google Scholar 

  72. Sharma PM, Yang X, Bourman M, Roberts V & Sukumar S (1992) Cancer Res. 52: 6407–6412

    Google Scholar 

  73. Benedyk MJ, Mullen JR & DiNardo S (1994) Genes and Dev. 8: 105–117

    Google Scholar 

  74. Miller IJ & Bieker JJ (1993) Mol. Cell. Biol. 13: 2776–2786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieler, T., Bellefroid, E. Perspectives on zinc finger protein function and evolution - an update. Mol Biol Rep 20, 1–8 (1994). https://doi.org/10.1007/BF00999848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999848

Key words

Navigation