Advertisement

Metabolic Brain Disease

, Volume 4, Issue 4, pp 225–237 | Cite as

Stimulus-activated changes in brain tissue temperature in the anesthetized rat

  • Joseph C. LaManna
  • Kimberly A. McCracken
  • Madhavi Patil
  • Otto J. Prohaska
Original Contributions

Abstract

A new thin-film, multisensor probe was used to determine tissue oxygen tension, tissue temperature, and electrical activity at two depths below the brain surface in chloral hydrateor nitrous oxide/halothane-anesthetized rats. Brain tissue temperature at both depths was found to be lower than core temperature by 1–2°C. Electrical activation, spreading depression, and pentylenetetrazol seizures all resulted in transient increases of brain tissue temperature of a few tenths degree centigrade. Vasodilation, induced by hypercapnia or hypoxia, caused a warming of brain tissue. Near-maximum oxygen metabolism, reached upon reoxygenation after severe hypoxia, was accompanied by tissue temperature rises of greater than 1°C. It was concluded that brain tissue temperature in the anesthetized rat is lower than core temperature due to extensive radiative and conductive heat loss to the environment through the head. Transient increases in tissue temperature during activation are caused by vasodilation and increased metabolism.

Key words

.in vivo tissue temperature probe brain oxygen metabolism brain temperature brain thermal response to neuronal activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, B. C., Howarth, J. V., and Ritchie, J. M. (1965). The initial heat production associated with the nerve impulse in crustacean and mammalian nonmyelinated nerve fibres.J. Physiol. (Lond.) 178: 368–383.Google Scholar
  2. Abrams, R. M., Stolwijk, J. A. J., Hammel, H. T., and Graichen, H. (1965). Brain temperature and brain blood flow in unanesthetized rats.Life Sci. 4: 2399–2410.Google Scholar
  3. Baker, M. A., and Hayward, J. N. (1967). Autonomic basis for the rise in brain temperature during paradoxical sleep.Science 157: 1586–1588.Google Scholar
  4. Bazett, H. C. (1949). Blood temperature and its control.Am. J. Med. Sci. 218: 483–492.Google Scholar
  5. Busto, R., Dietrich, W. D., Globus, M. Y.-T., Valdés, L., Scheinberg, P., and Ginsberg, M. D. (1987). Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury.J. Cereb. Blood Flow Metab. 7: 729–738.Google Scholar
  6. Canabac, M. (1986). Keeping a cool head.NIPS 1: 41–44.Google Scholar
  7. Delgado, J. M. R., and Hanai, T. (1966). Intracerebral temperatures in free-moving cats.Am. J. Physiol. 211: 755–769.Google Scholar
  8. Donhoffer, Sz., Szegvari, Gy., Jabai, K., and Farkas, M. (1959). Thermoregulatory heat production in the brain.Nature 184: 993–994.Google Scholar
  9. Hayward, J. N. (1967). Cerebral cooling during increased cerebral flood flow in the monkey.Proc. Soc. Exp. Biol. Med. 124: 555–560.Google Scholar
  10. Hayward, J. N., Smith, E., and Stuart, D. G. (1966). Temperature gradients between arterial blood and brain in the monkey.Proc. Soc. Exp. Biol. Med. 121: 547–551.Google Scholar
  11. Kawamura, H., Whitmoyer, D. I., and Sawyer, C. H. (1966). Temperature changes in the rabbit brain during paradoxical sleep.Electroenceph. Clin. Neurophysiol. 21: 469–477.Google Scholar
  12. LaManna, J. C., Rosenthal, M., Novack, R., Moffett, D. F., and Jöbsis, F. F. (1980). Temperature coefficients for the oxidative metabolic responses to electrical stimulation in cerebral cortex.Neurochem. 34: 203–209.Google Scholar
  13. LaManna. J. C., McCracken, K. A., Patil, M., and Prohaska, O. J. (1987a). Brain tissue temperature: Activation-induced changes determined with a new multisensor probe.Fed. Proc. 46: 355 (abstract).Google Scholar
  14. LaManna, J. C., Sick, T. J., Pikarsky, S. M., and Rosenthal, M. (1987b). Detection of an oxidizable fraction of cytochrome oxidase in intact rat brain.Am. J. Physiol. 253: C477–C483.Google Scholar
  15. LaManna, J. C., McCracken, K. A., Patil, M., and Prohaska, O. J. (1988). Brain tissue temperature: Activation-induced changes determined with a new multisensor probe. In Mochizuki, M., Honig, C. R., Koyama, T., Goldstick, T. K., and Bruley, D. F. (eds.),Oxygen Transport to Tissue X (Advances in Experimental Medicine and Biology, Vol. 222), Plenum Press, New York, pp. 383–389.Google Scholar
  16. Leniger-Follert. E., and Lübbers, D. W. (1976). Behavior of microflow and local pO2 of the brain cortex during and after direct electrical stimulation.Pflügers Arch. 366: 39–44.Google Scholar
  17. Lothman, E., LaManna, J. C., Cordingley, G.Rosenthal, M., and Somjen, G. (1975). Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats.Brain Res. 88: 15–36.Google Scholar
  18. McCook, R. D., Peiss, C. N., and Randall, W. C. (1962). Hypothalamic temperatures and blood flow.Proc. Soc. Exp. Biol. Med. 109: 518–521.Google Scholar
  19. McElligott, J. G., and Melzack, R. (1967). Localized thermal changes evoked in the brain by visual and auditory stimulation.Exp. Neurol. 17: 293–312.Google Scholar
  20. Melzack, R., and Casey, K. L. (1967). Localized temperature changes evoked in the brain by somatic stimulation.Exp. Neurol. 17: 276–292.Google Scholar
  21. Metzger, H. (1979). Effects of direct stimulation on cerebral cortex oxygen tension level.Mirovasc. Res. 17: 80–89.Google Scholar
  22. Prohaska, O. J. (1987). Thin-film micro-electrodes forin vivo electrochemical analysis. In Turner, A. P. F., Karube, I., and Wilson, G. S. (eds.),Biosensors, Oxford University Press, New York, pp. 377–389.Google Scholar
  23. Prohaska, O. J., Olcaytug, F., Pfunder, P., and Dragaun, H. (1986). Thin-film multiple electrode probes: Possibilities and limitations.IEEE Trans. Biomed. Eng BME-33: 223–229.Google Scholar
  24. Serota, H. M., and Gerard, R. W. (1938). Localized thermal changes in the cat's brain.J. Neurophysiol. 1: 115–124.Google Scholar
  25. Simon, E., Pierau, F.-K., and Taylor, D. C. M. (1986). Central and peripheral thermal control of effectors in homeothermic temperature regulation.Physiol. Rev. 66: 235–300.Google Scholar
  26. Tasaki, I., and Byrne, P. M. (1987). Heat production associated with synaptic transmission in the bullfrog spinal cord.Brain Res. 407: 386–389.Google Scholar
  27. Walter, J., Davenne, D., Shoham, S., Dinarello, C. A., and Krueger, J. M. (1986). Brain temperature changes coupled to sleep states persist during interleukin l-enhanced sleep.Am. J. Physiol. 250: R96–R103.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Joseph C. LaManna
    • 1
    • 2
  • Kimberly A. McCracken
    • 1
    • 2
  • Madhavi Patil
    • 3
  • Otto J. Prohaska
    • 3
  1. 1.Department of NeurologyUniversity Hospitals of ClevelandCleveland
  2. 2.Departments of Neurology and Physiology/BiophysicsCase Western Reserve University School of MedicineCleveland
  3. 3.Department of Biomedical EngineeringCase Western Reserve UniversityCleveland

Personalised recommendations