Molecular Engineering

, Volume 5, Issue 1–3, pp 271–300 | Cite as

Practical tools for molecular modeling of complex carbohydrates and their interactions with proteins

  • Serge Pérez
  • Christophe Meyer
  • Anne Imberty


Computer modeling has become a valuable component of studies of carbohydrate three-dimensional structures and their relationship to function and properties. In this paper we examine the methods required for conformational modeling of carbohydrates, and we present a series of tools that have been developed to this end. These tools can be integrated into three-dimensional real-time molecular modeling software. A data base of pre-optimized carbohydrate fragments has been established to be used further in the construction of much more complex molecules. In addition we describe some possible uses of a data base of three dimensional structures of the disaccharide fragments present in the glycan moiety ofN-glycoprotein. A molecular mechanical force field appropriate for the conformational analysis of oligosaccharides has been derived by the addition of new parameters to the Tripos force field and is compatible with protein simulations. The new parametrization has been assessed in three stages of increasing complexity: computations of potential energy surfaces, conformational refinement of relevant oligosaccharides, modeling at the atomic level of a protein/carbohydrate complex.

Key words

Carbohydrate lectin modeling interaction force field database 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Montreuil:Adv. Carbohydr. Chem. Biochem. 37, 157 (1980).Google Scholar
  2. 2.
    T. W. Rademacher, R. B. Parekh, and R. A. Dwek:Ann. Rev. Biochem. 57, 785 (1988).Google Scholar
  3. 3.
    J. P. Carver and D. A. Cumming:Pure Appl. Chem. 11, 1465 (1987).Google Scholar
  4. 4.
    J. P. Carver, D. Mandel, S. W. Michnick, A. Imberty, and J. W. Brady: Conformational Analysis of Oligosaccharides: Reconciliation of Theory with Experiments', in A. D. French and J. W. Brady, Eds.,Computer Modeling of Carbohydrate Molecules, ACS Symposium Series; No. 430, American Chemical Society, Washington DC., p. 266 (1990).Google Scholar
  5. 5.
    A. Imberty, Y. Bourne, C. Cambillau, and P. Rougé:Adv. Biophys. Chem,3, 71 (1993).Google Scholar
  6. 6.
    J. P. Carver:Pure Appl. Chem. 65, 763 (1993).Google Scholar
  7. 7.
    S. Pérez, A. Imberty, and J. P. Carver:Adv. Computational Biol. 1, 147 (1994).Google Scholar
  8. 8.
    D. A. Cumming and J. P. Carver:Biochemistry 26, 6664 (1987).Google Scholar
  9. 9.
    C. Hervé du Penhoat, A. Imberty, N. Roques, V. Michon, J. Mentech, G. Descotes, and S. Pérez:J. Am. Chem. Soc. 113, 3720 (1991).Google Scholar
  10. 10.
    C. Meyer, S. Pérez, C. Hervé du Penhoat, and V. Michon:J. Am. Chem. Soc. 115, 10300 (1993).Google Scholar
  11. 11.
    S. Doubet, K. Bock, D. Smith, A. Darvill, and P. Albersheim:TIBS 14, 475 (1989).Google Scholar
  12. 12.
    R. U. Lemieux, K. Bock, L. T. Delbaere, S. Koto and V. S. R. Rao:Can. J. Chem. 58, 631 (1980).Google Scholar
  13. 13.
    S. R. Niketic and K. Rasmussen:Lecture Notes in Chemistry. Vol. 3, Springer-Verlag, Berlin (1977).Google Scholar
  14. 14.
    G. A. Jeffrey and R. J. Taylor:J. Comp. Chem. 1, 99 (1980).Google Scholar
  15. 15.
    I. Tvaroska and S. Pérez:Carbohydr. Res. 149, 389 (1986).Google Scholar
  16. 16.
    S. N. Ha, A. Giammona, M. Field, and J. W. Brady:Carbohydr. Res. 180, 207 (1988).Google Scholar
  17. 17.
    S. W. Homans:Biochemistry 29, 9110 (1990).Google Scholar
  18. 18.
    S. Arnott and S. E. Scott:J. Chem. Soc. Perkin Trans. 2, 324 (1972).Google Scholar
  19. 19.
    S. Sheldrick and D. Akrigg:Acta Crystallogr. B36, 1615 (1980).Google Scholar
  20. 20.
    U. Burkert and N. L. Allinger:Molecular Mechanics. Am. Chem. Soc. Monograph No. 177, American Chemical Society, Washington DC (1982).Google Scholar
  21. 21.
    N. L. Allinger:J. Am. Chem. Soc. 99, 8127 (1977).Google Scholar
  22. 22.
    N. L. Allinger, Y. H. Yuh, and J. H. Lii:J. Am. Chem. Soc. 11, 8551 (1989).Google Scholar
  23. 23.
    A. D. French, R. S. Rowland, and N. L. Allinger: ‘Modeling of Glucopyranose: The Flexible Monomer of Amylose’, in A. D. French and R. W. Brady, Eds.,Computer Modeling of Carbohydrate Molecules. ACS Symposium Series. No. 430, American Chemical Society, Washington DC., p. 120 (1990).Google Scholar
  24. 24.
    S. Pérez and M. M. Delage:Carbohydr. Res. 212, 253 (1991).Google Scholar
  25. 25.
    M. Ragazzi, D. F. Ferro, and A. Provalosi:J. Comp. Chem. 7, 105 (1987).Google Scholar
  26. 26.
    R. H. Marchessault and S. Pérez:Biopolymers 18, 2369 (1979).Google Scholar
  27. 27.
    R. A. Scott and H. A. Scheraga:J. Chem. Phys. 42, 2209 (1966).Google Scholar
  28. 28.
    I. Tvaroska:Carbohydr. Res. 125, 155 (1984).Google Scholar
  29. 29.
    S. Pérez and C. Vergelati:Polymer Bull. 17, 141 (1987).Google Scholar
  30. 30.
    S. Pérez: D. Sc. thesis, Université de Grenoble (1978).Google Scholar
  31. 31.
    V. H. Tran, A Buléon, A. Imberty, and S. Pérez:Biopolymers 28, 679 (1988).Google Scholar
  32. 32.
    A. D. French, V. H. Tran, S. Pérez: ‘Conformational Study of a Disaccharide (Cellobiose) with the Molecular Mechanics Program (MM2)’, in A. D. French and R. W. Brady, Eds.,Computer Modeling of Carbohydrate Molecules, ACS Symposium Series. No. 430, American Chemical Society, Washington DC., p. 191 (1990).Google Scholar
  33. 33.
    A. Imberty, V. Tran and S. Pérez:J. Comp. Chem. 11, 205 (1989).Google Scholar
  34. 34.
    S. Pérez:Curr. Opinion Structural Biology 3, 675 (1993).Google Scholar
  35. 35.
    A. D. French and M. K. Dowd:J. Mol. Struct. (Theochem) 286, 183 (1993).Google Scholar
  36. 36.
    V. Warin, F. Baert, R. Fouret, G. Strecker, G. Spik, B. Fournet, and J. Montreuil:Carbohydr. Res. 76, 11 (1979).Google Scholar
  37. 37.
    Y. Bourne, P. Rougé and C. Cambillau:J. Biol. Chem. 265, 18161 (1990).Google Scholar
  38. 38.
    Y. Bourne, P. Rougé, and C. Cambillau:J. Biol. Chem. 267, 197 (1992).Google Scholar
  39. 39.
    T. Srikrishnan, M. S. Chowdhary, and K. L. Matta:Carbohydr. Res. 186, 161 (1989).Google Scholar
  40. 40.
    A. Imberty, S. Gerber, V. Tran, and S. Pérez,Glycoconj. J. 7, 27 (1990).Google Scholar
  41. 41.
    A. Imberty, M. M. Delage, Y. Bourne, C. Cambillau, and S. Pérez:Glycoconj. J. 8, 456 (1991).Google Scholar
  42. 42.
    C. Wright:J. Mol. Biol. 215, 635 (1990).Google Scholar
  43. 43.
    D. A. Brant and M. D. Christ: ‘Realistic Conformational Modeling of Carbohydrates: Applications and Limitations in the Context of Carbohydrate-High Polymers’, in A. D. French and R. W. Brady, Eds.,Computer Modeling of Carbohydrate Molecules, ACS Symposium Series No. 430, American Chemical Society, Washington DC., p. 42 (1990).Google Scholar
  44. 44.
    V. S. R. Rao, M. Biswas, C. Mukhopadhyay, and P. V. Balaji:J. Mol. Struct. 194, 203 (1989).Google Scholar
  45. 45.
    R. Stuikeprill and B. Meyer:Eur. J. Biochem. 24, 903 (1990).Google Scholar
  46. 46.
    SYBYL, Tripos Associates, 1669 S. Hanley Road, Suite 303, St Louis, MO, 63144, USA.Google Scholar
  47. 47.
    D. N. J. White:J. Chem. Soc. Perkin 2, 43 (1975).Google Scholar
  48. 48.
    M. Clark, R. D. Cramer III, and N. van Opdenbosch:J. Comp. Chem. 10, 982 (1989).Google Scholar
  49. 49.
    I. Tvaroska and T. Bleha:Adv. Carbohydr. Chem. Biochem. 47, 45 (1989).Google Scholar
  50. 50.
    A. Imberty, K. D. Hardman, J. P. Carver, and S. Pérez:Glycobiology 1, 456 (1991).Google Scholar
  51. 51.
    G. A. Jeffrey, J. A. Pople, J. S. Binkley, and S. Vishveshwara:J. Am. Chem. Soc. 100, 373 (1978).Google Scholar
  52. 52.
    M. J. S. Dewar and W. Thiel:J. Am. Chem. Soc. 99, 4899 (1977).Google Scholar
  53. 53.
    H. Berthod and A. Pullman:J. Chem. Phys. 62, 942 (1965).Google Scholar
  54. 54.
    I. Tvaroska and J. P. Carver:J. Phys. Chem. 98, 9477 (1994).Google Scholar
  55. 55.
    J. Koca, S. Pérez, and A. Imberty:J. Comp. Chem. (in press).Google Scholar
  56. 56.
    K. D. Hardman, R. C. Agarwal, and M. J. Freiser:J. Biol. Chem. 157, 69 (1982).Google Scholar
  57. 57.
    K. D. Hardman and C. F. Ainsworth:Biochemistry 15, 1120 (1976).Google Scholar
  58. 58.
    Y. C. Sekharudu and V. S. R. Rao:Int. J. Biol. Macromol. 6, 337 (1984).Google Scholar
  59. 59.
    Z. Derewenda, J Yariv, J. R. Helliwell, A. J. Kalb, E. J. Dodson, M. Z. Papiz, T. Wan, and J. Campbell:EMBO J. 8, 2189 (1989).Google Scholar
  60. 60.
    A. Imberty and S. Pérez:Glycobiology 4, 351 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Serge Pérez
    • 1
  • Christophe Meyer
    • 1
  • Anne Imberty
    • 2
  1. 1.Ingeniérie MoléculaireINRANantes Cédex 03France
  2. 2.Laboratoire de Synthèse Organique-CNRSFaculté des SciencesNantes Cédex 03France

Personalised recommendations