Advertisement

Molecular Engineering

, Volume 5, Issue 1–3, pp 11–23 | Cite as

Binding sites of acetylcholine in the aromatic gorge leading to the active site of acetylcholinesterase

  • Alberte Pullman
Article

Abstract

Theoretical calculations performed on the interactions of acetylcholine with the ‘aromatic gorge’ of acetylcholinesterase indicate the existence of a number of local minima for the substrate. These minima are clustered in four regions of increasing interactions from top to bottom of the gorge, culminating in the region of the ‘active site’. The results allow the delineation of the role of the different aminoacids lining the walls, emphasizing, in particular, that of Trp 279 and Trp 84 while smaller interactions involve tyrosines 70, 121, 130, 334 and Phe 330. The influence of D72 is stressed, as well as the orientating role of A 201 and the strong driving influence of E199.

Key words

Acetylcholine binding site acetylcholinestesrase molecular modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Quinn:Chem. Rev. 87, 955–979 (1987).Google Scholar
  2. 2.
    I. B. Wilson and F. Bergmann:J. Biol. Chem. 185, 479–489 (1950).Google Scholar
  3. 3.
    I. B. Wilson, F. Bergmann, and D. Nachmanson:J. Biol. Chem. 186, 683–692 (1950).Google Scholar
  4. 4.
    H. C. Froede and I. B. Wilson:J. Biol. Chem. 259, 11010–11013 (1984).Google Scholar
  5. 5.
    K. McPhee-Quigley, P. Taylor, and S. Taylor:J. Biol. Chem. 260, 12185–12189 (1985).Google Scholar
  6. 6.
    G. Gibney, S. Camp, M. Dionne, K. McPhee-Quigley, and P. Taylor:Proc. Natl. Acad. Sci. USA 87, 7546–7550 (1990).Google Scholar
  7. 7.
    J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman:Science 253, 872–879 (1991).Google Scholar
  8. 8.
    H. Noble, T. L. Rosenberry, and E. Neumann:Biochemistry 19, 3705–3711 (1980).Google Scholar
  9. 9.
    S. G. Cohen, H. Salih, M. Solomon, S. Howard, S.B. Christi, and J.B. Cohen:Biochim. Biophysica Acta 997, 167–175 (1989).Google Scholar
  10. 10.
    C. Weise, H. J. Kreienkamp, R. Raba, A. Pedak, A. Aaviksaar, and F. Hucho:Embo J. 9, 3885–3888 (1990).Google Scholar
  11. 11.
    J. L. Sussman and I. Silman:Current Opinions in Structural Biology 2, 721–729 (1992).Google Scholar
  12. 12.
    J. L. Sussman, M. Harel, and I. Silman: in A. Pullmanet al. (Ed.),Membrane Proteins, Structures, Interactions and Models, KIuwer Academic Publishers, Dordrecht pp. 161–175 (1992).Google Scholar
  13. 13.
    D. A. Dougherty and D. A. Stauffer:Science 250, 1558–1560 (1990).Google Scholar
  14. 14.
    M. Dhaenens, L. Lacombe, J. M. Lehn, and J. P. Vigneron:J. Chem Soc. Chem. Commun. 1097–1099 (1984).Google Scholar
  15. 15.
    F. B. Hasan, S. G. Cohen, and J. B. Cohen:J. Biol. Chem. 255, 3898–3904 (1980).Google Scholar
  16. 16.
    J. L. Galzi, F. Revah, A. Bessis, and J. P. Changeux:Ann. Rev. Pharmacology 31, 37–72 (1991).Google Scholar
  17. 17.
    Y. G. Satow, H. Cohen, E. A. Padlan, and D. R. Davies:J. Mol. Biol. 190, 593–604 (1986).Google Scholar
  18. 18.
    G. F. Tomaselli, J. T. McLaughlin, M. E. Jurman, E. Hawrot, and G. Yellen:Biophys. J. 60, 721–727 (1991).Google Scholar
  19. 19.
    S. Pierce, P. Preston-Hurlburt, and E. Hawrot:Proc. R. Soc. Lond. Biol. 241, 207–213 (1990).Google Scholar
  20. 20.
    J. L. Galzi, D. Bertrand, A. Devillers-Thiery, F. Revah, S. Bertrand, and J. P. Changeux:FEBS Lett. 294, 198–202 (1991).Google Scholar
  21. 21.
    R. McKinnon:Curr. Opin. Neurobiol. 1, 14–19 (1991).Google Scholar
  22. 22.
    M. L. Verdank, G. J. Boks, H. Kooijman, J. A. Kanlersand, and J. Kroon:Computer-Aided Molecular Design 7, 173–182 (1993).Google Scholar
  23. 23.
    A. Pullman and X. W. Hui: in A. Pullmanet al. (Ed.).Membrane Proteins. Structures. Interactions and Models, Kluwer Academic Publishers, Dordrecht, pp. 229–232 (1992).Google Scholar
  24. 24.
    M. Harel, I. Schalk, L. Ehret-Sabatier, F. Bouet, M. Goeldner, C. Hirth, P. Axelsen, I. Silman, and J.L. Sussman:Proc. Natl. Acad. Sci. USA 90, 9031–9035 (1993).Google Scholar
  25. 25.
    M. Harel, J. L. Sussman, E. Krejci, S. Bon, P. Chanal, J. Massoulié, and I. Silman:Proc. Natl. Acad. Sci. USA 89, 10827–10831 (1992).Google Scholar
  26. 26.
    Polypep, C. Etchebest and R. Lavery: Laboratoire de Biochimie Théorique du CNRS. Institut de Biologie Physico-Chimique, Paris, France (1989)Google Scholar
  27. 27.
    R. Lavery:Manual to Ligand, Laboratoire de Biochimie Théorique du CNRS, Institut de Biologie Physico-Chimique, Paris, France (1990).Google Scholar
  28. 28.
    R. Lavery, H. Sklenar, K. Zakrzewska, and B. Pullman:J. Biomol. Struct. Dynam. 3, 989–1014 (1986).Google Scholar
  29. 29.
    R. Lavery, I. Parker, and J. Kendrick:J. Biomol. Struct. Dynam. 4, 443–461 (1986).Google Scholar
  30. 30.
    B. Hingerty, R. H. Richie, T. L. Ferrel, and J. E. Turner:Biopolymers 24, 427–439 (1985).Google Scholar
  31. 31.
    B. Hartmann, B. Malfoy, and R. Lavery:J. Mol. Biol. 207, 433–444 (1985).Google Scholar
  32. 32.
    R. Lavery and K. Zakrzewska: in D. Beveridge, and R. Lavery (Eds.)Theoretical Chemistry and Molecular Biophysics. Vol. 1 DNA, Adenine Press, pp. 173–190 (1990).Google Scholar
  33. 33.
    A preliminary summary of some of the results of this study was given in A. Pullman and X. Hui:Biophysical J. 66, (2, part 2) A 345 (1994).Google Scholar
  34. 34.
    Z. Radic, E. Reiner, and P. Taylor:Molecular Pharmacology 39, 98–104 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Alberte Pullman
    • 1
  1. 1.Institut de Biologie Physico-ChimiqueFondation Edmond de RothschildParisFrance

Personalised recommendations