Advertisement

Metabolic Brain Disease

, Volume 3, Issue 4, pp 293–296 | Cite as

Glutathione reductase during and after brain ischemia in gerbils

  • Danica Stanimirovićc
  • Bogdan M. Djuričić
  • Bogomir B. Mrŝulja
Original Contributions

Abstract

The activity of glutathione reductase (GR) was measured in crude mitochondrial fraction isolated from cerebral cortex and basal ganglia of Mongolian gerbils subjected to bilateral carotid occlusion of various duration (1, 2, 3, 5, 10, and 15 min), or reflow (1, 24, and 96 hr) following ischemia (5 or 15 min). Ischemia up to 5 min does not induce changes in GR activity in either structure. Basal ganglia activity is halved at 10 min and cortical at 15 min of ischemia. In reflow, basal ganglia GR activity is diminished, while cortical GR is transiently reduced at day 1 of reflow. The persistent and profound decrease in GR activity in basal ganglia following ischemia is indicative of the lowered antioxidative capacity of these cells, being possibly related to their greater vulnerability toward ischemia.

Key words

ischemia glutathione reductase cortex basal ganglia gerbil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan, N. G., Bazan, H. E., Kennedy, W. G., and Joel, C. D. (1971). Regional distribution and rate of production of free fatty acids in rat brain.J. Neurochem. 18:1387–1393.Google Scholar
  2. Gurd, J. W., Jones, L. R., Mahler, H. R., and Moore, W. J. (1974). Isolation and partial characterization of rat brain synaptic membrane.J. Neurochem. 22:281–290.Google Scholar
  3. Larsson, A., Orrenius, S., Holmgren, A., and Mannervik, B. (1983).Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects, Raven Press, New York.Google Scholar
  4. Lowry, O. H., and Passonneau, J. V. (1974).A Flexible System of Enzymatic Analysis, Academic Press. New York.Google Scholar
  5. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:952–958.Google Scholar
  6. McCord, M. (1985). Oxygen-derived free radicals in postischemic tissue injury.N. Engl. J. Med. 312:159–163.Google Scholar
  7. Oshino, N., and Chance, B. (1977). Properties of glutathione release observed during reduction of organic hydroperoxides, demetylation of aminopyrine and oxidation of some substances in perfused rat liver and their implications for the physiological function of catalase.Biochem. J. 162:509–525.Google Scholar
  8. Pulsinelli, W. A. (1985). Selective neuronal vulnerability: Morphological and molecular characteristics. In Kogure, K., Hossmann, K.-A., Siesjo, B. K., and Welsh, F. A. (eds.),Progress in Brain Research, Vol. 63, Elsevier, Amsterdam, pp. 29–37.Google Scholar
  9. Rehncrona, S., Mela, L., and Siesjo, B. K. (1979). Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia.Stroke 10:437–446.Google Scholar
  10. Siesjo, B. K. (1981). Cell damage in the brain: A speculative synthesis.J. Cereb. Blood Flow Metab. 1:155–185.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Danica Stanimirovićc
    • 1
  • Bogdan M. Djuričić
    • 1
  • Bogomir B. Mrŝulja
    • 1
  1. 1.Section of Pathological Neurochemistry and NeuropharmacologyInstitute of Biochemistry, School of MedicineBelgradeYugoslavia

Personalised recommendations