Skip to main content
Log in

Conformations and dynamics of surfactants in micelles and liquid crystals by nuclear magnetic relaxation

  • Review Article
  • Published:
Molecular Engineering

Abstract

The order parameters as well as the rates of overall and internal motions of aggregated surfactants can be obtained from deuteron and carbon-13 nuclear relaxation experiments. The main contribution to the relaxation is generally the quadrupolar coupling (2H) or the short range dipolar interaction with protons (13C). In some cases it is convenient to derive the same information from the13C relaxation induced by long range dipolar interactions with a paramagnetic probe exchanging rapidly among the polar heads of surfactant molecules. This paper outlines the methods of interpretation of relaxation data by means of a rotational jump model of internal motions, taking into account most of the accessible conformers. The conformational and dynamical parameters are obtained from the magnetic field dependence of the longitudinal relaxation rates (micelles) or from the simultaneous fit of these rates and of the dipolar or quadrupolar splittings (liquid crystals). Some examples of application of these methods are given from recent works on single and double detailed surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Marcelja:Biochim. Biophys. Acta 367, 165 (1974).

    Google Scholar 

  2. P. van der Ploeg and H. J. Berendsen:J. Chem. Phys. 76, 3271 (1982).

    Google Scholar 

  3. K. A. Dill and P. J. Flory:Proc. Natl. Acad. Sci. U.S.A. 78, 676 (1981).

    Google Scholar 

  4. D. W. R. Gruen:J. Phys. Chem. 89, 146 (1985).

    Google Scholar 

  5. M. C. Woods, J. M. Haile and J. P. T. O'Connell:J. Phys. Chem. 90, 1875 (1986).

    Google Scholar 

  6. K. Watanabe, M. Ferrerio and M. L. Klein:J. Phys. Chem. 92, 819 (1988).

    Google Scholar 

  7. M. Vacatello and D. Y. Yoon:J. Chem. Phys. 92, 757 (1990).

    Google Scholar 

  8. S. Karaborni and J. P. T. O'Connell:Langmuir 6, 905 (1990).

    Google Scholar 

  9. H. Wennerström, B. Lindman, O. Söderman, T. Drakenberg and J. B. Rosenholm:J. Am. Chem. Soc. 101, 6860 (1979).

    Google Scholar 

  10. C. Chachaty, G. G. Warr, M. Jansson and Puyong Li:J. Phys. Chem. 95, 3830 (1991).

    Google Scholar 

  11. G. Lipari and A. Szabo:J. Am. Chem. Soc. 104, 4546 (1982).

    Google Scholar 

  12. G. Lipari and A. Szabo:J. Am. Chem. Soc. 104, 4559 (1982).

    Google Scholar 

  13. A. Tsutsumi:Molec. Phys. 37, 111 (1979).

    Google Scholar 

  14. P. J. Flory:Statistical Mechanics of Chain Molecules, Interscience, New York, 1969, Ch. V.

    Google Scholar 

  15. A. Loewenstein, D. Igner, U. Zehavi, H. Zimmermann and G. Luckhurst:Liq. Cryst. 7, 457 (1990).

    Google Scholar 

  16. D. J. Delikatny and E. E. Burnell:Molec. Phys. 67, 775 (1989).

    Google Scholar 

  17. C. Chachaty and G. Langlet:J. Chim. Phys. 82, 613 (1985).

    Google Scholar 

  18. R. G. Wittebort and A. Szabo:J. Chem. Phys. 69, 1722 (1978).

    Google Scholar 

  19. J. A. Marqusee, M. Warner and K. A. Dill:J. Chem. Phys. 81, 6404 (1984).

    Google Scholar 

  20. E. Rommel, F. Noack, P. Meier and G. Kothe:J. Phys. Chem. 92, 2981 (1988).

    Google Scholar 

  21. J.-Ph. Caniparoli, A. Grassi and C. Chachaty:Molec. Phys. 63, 419 (1988).

    Google Scholar 

  22. J. H. Freed:J. Chem. Phys. 66, 4183 (1977).

    Google Scholar 

  23. E. E. Burnell and C. A. de Lange:J. Magn. Res. 39, 461 (1980).

    Google Scholar 

  24. E. T. Samulski and R. Y. Dong:J. Chem. Phys. 77, 5090 (1982).

    Google Scholar 

  25. R. Y. Dong and G. M. Richards:Chem. Phys. Lett. 171, 389 (1990).

    Google Scholar 

  26. T. Zemb and C. Chachaty:Chem. Phys. Lett. 88, 68 (1982).

    Google Scholar 

  27. Y. Chevalier and C. Chachaty:J. Am. Chem. Soc. 107, 1102 (1985).

    Google Scholar 

  28. Y. Chevalier and C. Chachaty:J. Phys. Chem. 89, 875 (1985).

    Google Scholar 

  29. A. Faure, T. Ahlnäs, A. M. Tistchenko and C. Chachaty:J. Phys. Chem. 91, 1827 (1987).

    Google Scholar 

  30. C. Chachaty:Prog. NMR Spectrosc. 19, 183 (1987).

    Google Scholar 

  31. C. Chachaty and P. Rigny:J. Chim. Phys. 79, 203 (1982).

    Google Scholar 

  32. P. Brûlet and H. M. McConnell:Proc. Natl. Acad. Sci. U.S.A. 72, 1421 (1975).

    Google Scholar 

  33. J.-P. Korb, M. Ahadi and H. M. McConnell:J. Phys. Chem. 91, 1255 (1987).

    Google Scholar 

  34. C. Chachaty and J.-P. Korb:J. Phys. Chem. 92, 2834 (1988).

    Google Scholar 

  35. C. Chachaty and J.-P. Korb:Liqu. Cryst. 3, 807 (1988).

    Google Scholar 

  36. P. van der Ploeg and H. J. C. Berendsen:Molec. Phys. 49, 233 (1983).

    Google Scholar 

  37. C. Chachaty, Th. Bredel, A. M. Tistchenko, J.-Ph. Caniparoli and B. Gallot:Liqu. Cryst. 3, 815 (1988).

    Google Scholar 

  38. C. Chachaty and Th. Bredel:J. Phys. Chem. 95, 5335 (1991).

    Google Scholar 

  39. A. Faure, J. Lovera, P. Grégoire and C. Chachaty:J. Chim. Phys. 82, 780 (1985).

    Google Scholar 

  40. A. Faure, A. M. Tistchenko, T. Zemb and C. Chachaty:J. Phys. Chem. 89, 3373 (1985).

    Google Scholar 

  41. C. Chachaty, T. Ahlnäs, B. Lindström, H. Néry and A. M. Tistchenko:J. Colloid Interf. Sci. 122, 406 (1988).

    Google Scholar 

  42. P. S. Hubbard:Proc. R. Soc. London, Ser. A A291, 537 (1966).

    Google Scholar 

  43. S. J. Kohler and M. P. Klein:Biochemistry 15, 967 (1976).

    Google Scholar 

  44. C. Chachaty, J.-Ph. Caniparoli, A. Faure and A. M. Tistchenko:J. Phys. Chem. 92, 6330 (1988).

    Google Scholar 

  45. J.-Ph. Caniparoli, Th. Bredel, C. Chachaty and J. Maruani:J. Phys. Chem. 93, 97 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chachaty, C. Conformations and dynamics of surfactants in micelles and liquid crystals by nuclear magnetic relaxation. Mol Eng 2, 65–94 (1992). https://doi.org/10.1007/BF00999523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999523

Key words

Navigation