Advertisement

Metabolic Brain Disease

, Volume 4, Issue 1, pp 9–15 | Cite as

Effects of sensory-motor cortical lesions on blood-brain permeability in guinea pigs

  • Lj. M. Rakic
  • B. V. Zlokovic
  • M. B. Segal
  • M. H. Lipovac
  • D. M. Mitrovic
  • R. Veskov
  • J. B. Mackic
  • H. Davson
Original Contributions

Abstract

Effects of sensory-motor cortical lesions on the function of the blood-brain barrier in distant brain areas are poorly understood. Therefore a brain vascular perfusion method has been used to measure simultaneously the kinetics of entry of two inert polar molecules, D[14C]mannitol (MW 180) and [3H]polyethylene glycol (PEG; MW 4000), into the parietal cortex, hippocampus, and caudate nucleus in guinea pigs with ipsilateral and contralateral sensorymotor cortical lesions. The graphically determined cerebral capillary unidirectional constant,K in , indicated a marked increase in blood-to-brain transport of both molecules in all regions studied, the changes being significantly higher after contralateral lesion. The mannitol/PEG cerebrovascular permeability constant ratio,P man /PPEG, suggested the opening up of channels that permit a flow of fluid carrying substances either with respect to (2 days after ipsilateral lesion) or irrespective of their molecular size, depending on the time after lesion. Amphetamine treatment in the guinea pigs with sensory-motor lesions induced more pronounced blood-brain barrier permeability changes for both molecules in distant brain areas.

Key words

cortical lesions blood-brain permeability guinea pigs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyeson, M. G., and Feeney, D. M. (1985). Striate dopamine after cortical injury.Exp. Neurol. 89: 479–483.Google Scholar
  2. Bradbury, M. W. B. (1979).The Concept of Blood-Brain Barrier, John Wiley, Chichester.Google Scholar
  3. Crone, C. (1986). Modulation of solute permeability in microvascular endothelium.Fed. Proc. 45: 77–83.Google Scholar
  4. Davson, H., and Danielli, J. F. (1942).The Permeability of Natural Membranes, Cambridge University Press, Cambridge, pp. 19–27.Google Scholar
  5. Davson, H., Welch, K. and Segal, M. B. (1987).Physiology and patophysiology of cerebrospinal fluid. Churchill Livingstone pp. 65–189.Google Scholar
  6. Feeney, D. M., Gonzales, A., and Law, W. (1982). Amphetamine, holoperidine and experience interact to affect rate of recovery after motor cortex injury.Science 271: 855–857.Google Scholar
  7. Pearlson, G. D., and Robinson, R. G. (1981). Suction lesions of the cerebral cortex in the rat induce asymmetrical behavioral and catecholaminergic responses.Brain Res. 218: 233–242.Google Scholar
  8. Pekovic, S., Rusic, M., Veskov, R., and Rakic, Lj. (1988). Suction ablation of the sensory-motor cortex induce asymmetrycal changes in Ca2+ uptake in rat brain regio synaptosomes.Adv. Biosci. 70: 133–136.Google Scholar
  9. Rakic, Lj. (1984).Systems Regulatory Behaviour, Mir, Moscow.Google Scholar
  10. Rakic, Lj. (1988). Experimental models of restoration of functions of the brain lesions. In Cohadon, F., and Loboântunes, J. (eds.),Recovery of Function in the Nervous System, Fidia Research Series, Vol. 13, Liviana Press, Padova (in press).Google Scholar
  11. Rakic, L. j., Zlokovic, B. V., Segal, M. B., Davson, H., Begley, D. J., Mitrovic, D. M., and Lipovac, M. N. (1988). Blood-brain barrier dysfunction and experimental psychosis in guinea pigs.Brain (in press).Google Scholar
  12. Rozenzweig, M. R., and Porter, L. W. (1984). Brain function: Neural adaptation and recovery from brain injury.Annu. Rev. Psychol. 35: 2377–2388.Google Scholar
  13. Rusic, M., Pekovic, S., Veskov, R., and Rakic, Lj. (1988). The effects of cortical injury on Na+,K+ ATPase activity.Adv. Biosci. 70: 173–176.Google Scholar
  14. Zlokovic, B. V., Begley, D. J., Djuricic, B. M., and Mitrovic, D. M. (1986). Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: Method and application to N-methyl-a-aminoisobutyric acid.J. Neurochem. 46: 1444–1451.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Lj. M. Rakic
    • 1
  • B. V. Zlokovic
    • 2
  • M. B. Segal
    • 3
  • M. H. Lipovac
    • 2
  • D. M. Mitrovic
    • 2
  • R. Veskov
    • 4
  • J. B. Mackic
    • 1
  • H. Davson
    • 3
  1. 1.Institute of BiochemistrySchool of Medicine BelgradeYugoslavia
  2. 2.Institute of PhysiologySchool of Medicine BelgradeYugoslavia
  3. 3.Department of PhysiologySt. Thomas's Hospital Medical SchoolLondonUK
  4. 4.Institute for Biological Research “Sinisa Stankovic,”Yugoslavia

Personalised recommendations