, Volume 159, Issue 1, pp 66–76 | Cite as

Photosynthetic characteristics of chloroplasts isolated fromMesembryanthemum crystallinum L., a halophilic plant capable of Crassulacean acid metabolism

  • Barbara Demmig
  • Klaus Winter


Photosynthetically highly active chloroplasts were routinely obtained by rupture of leaf protoplasts from the halophyteMesembryanthemum crystallinum which exhibited the photosynthetic characteristics of either a C3 plant when grown with 20 mmol l-1 NaCl in the rooting medium, or a Crassulacean-acid-metabolism (CAM) plant when grown with 400 mmol l-1 NaCl. Photosynthesis rates of C3 and CAM chloroplasts were 150–250 and 90–150 μmol mg-1 chlorophyll h-1, respectively. Because of osmotic adjustment, CAM chloroplasts required higher sorbitol concentrations (0.7–0.8 mol l-1) in the assay medium than C3 chloroplasts (0.3–0.4 mol l-1) for optimum activity. Substitution of sorbitol by NaCl as the osmoticum strongly reduced photosynthesis of CAM chloroplasts. Rates of electron transport (ferricyanide reduction, uncoupled) remained unaffected over a range of sorbitol concentrations (0 to 1 mol l-1). Sensitivity of electron transport to increasing levels of NaCl was less pronounced than the NaCl-sensitivity of CO2 fixation by intact chloroplasts. The CAM chloroplasts showed a broad pH optimum of photosynthesis between pH 7.0 and 8.2; photosynthesis of C3 chloroplasts dropped markedly below pH 7.6. The CAM chloroplasts maintained a higher transenvelope proton gradient than C3 chloroplasts both in the light and dark. External pyruvate (5 mmol l-1) inhibited photosynthesis of CAM chloroplasts, but not of C3 chloroplasts. Inhibition was reduced by increased external concentrations of orthophosphate.

Key words

Chloroplasts Crassulacean acid metabolism (inducible) Mesembryanthemum Photosynthesis (isolated chloroplasts) Salinity 



Crassulacean acid metabolism






4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant Physiol.24, 1–15Google Scholar
  2. Baker, N.R. (1978) Effect of high cation concentrations on photosystem II activities. Plant Physiol.62, 883–893Google Scholar
  3. Critchley, C. (1982) Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations. Nature (London)298, 483–485Google Scholar
  4. Critchley, C., Baianu, I.C., Govindjee, Gutowsky, H.S. (1982) The role of chloride in O2 evolution by thylakoids from salt-tolerant higher plants. Biochim. Biophys. Acta682, 436–445Google Scholar
  5. Demmig, B., Gimmler, H. (1983) Properties of the isolated intact chloroplast at cytoplasmic K+ concentrations. I. Light-induced cation uptake into intact chloroplasts is driven by an electrical potential difference. Plant Physiol. (in press)Google Scholar
  6. Dominy, P.J., Baker, N.R. (1980) Salinity and in vitro ageing effects on primary photosynthetic processes of thylakoids isolated fromPisum sativum andSpinacia oleracea. J. Exp. Bot.31, 59–74Google Scholar
  7. Fliege, R., Flügge, U.I., Werdan, K., Heldt, H.W. (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triose phosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys. Acta502, 232–247Google Scholar
  8. Gimmler, H., Demmig, B., Kaiser, W.M. (1981) The role of K+ and H+ fluxes across the chloroplasts envelope for photosynthetic CO2-fixation. In: Proc. 4th Int. Congr. Photosynth. Res., vol. 4, pp. 599–608, Akoyunoglou, G., ed. Balaban International Science Services, PhiladelphiaGoogle Scholar
  9. Heber, U. (1980) Metabolic regulation by a transmembrane proton gradient. In: Cell compartmentation and metabolic channeling, pp. 333–344, Nover, L., Lynen, F., Mothes, K., eds. VEB Fischer, Jena; Elsevier, AmsterdamGoogle Scholar
  10. Heber, U., Krause, G.H. (1971) Hydrogen and proton transfer across the chloroplast envelope. In: Proc. 2nd Int. Congr. Photosynth. Res., vol. 2, pp. 1023–1033, Forti, G., Avron, M., Melandri, M., eds. Junk, The HagueGoogle Scholar
  11. Heber, U., Santarius, K.A. (1970) Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z. Naturforsch. Teil B25, 718–728Google Scholar
  12. Heldt, H.W. (1980) Measurement of metabolite movement across the envelope and of the pH in the stroma and the thylakoid space in intact chloroplasts. Methods Enzymol.69, 604–613Google Scholar
  13. Heldt, H.W., Chon, C.J., Maronde, D., Herold, A., Stankovic, Z.S., Walker, D.A., Kraminer, A., Kirk M.R., Heber, U. (1977) Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol.59, 1146–1155Google Scholar
  14. Heldt, H.W., Werdan, K., Milovancev, M., Geller, G. (1973) Alkalization of the chloroplast stroma caused by light dependent proton flux into the thylakoid space. Biochim. Biophys. Acta314, 224–241Google Scholar
  15. Heun, A.-M., Gorham, J., Lüttge, U., Wyn Jones, R.G. (1981) Changes of water-relation characteristics and levels of organic cytoplasmic solutes during salinity induced transition ofMesembryanthemum crystallinum from C3-photosynthesis to Crassulacean acid metabolism. Oecologia50, 66–72Google Scholar
  16. Holtum, J.A.M., Osmond, C.B. (1981) The gluconeogenic metabolism of pyruvate during deacidification in plants with Crassulacean acid metabolism (CAM). Aust. J. Plant Physiol.8, 31–44Google Scholar
  17. Kaiser, W., Urbach, W. (1977) The effect of dihydroxyacetone phosphate and 3-phosphoglycerate on O2 evolution and on the levels of ATP, ADP and Pi in isolated intact chloroplasts. Biochim. Biophys. Acta459, 337–346Google Scholar
  18. Kenyon, W.H., Holaday, A.S., Black, C.C. (1981) Diurnal changes in metabolite levels and Crassulacean acid metabolism inKalanchoe daigremontiana leaves. Plant Physiol.68, 1002–1007Google Scholar
  19. Levi, C., Gibbs, M. (1975) Carbon dioxide fixation in isolatedKalanchoe chloroplasts. Plant Physiol.56, 164–166Google Scholar
  20. Nishida, K., Sanada, Y. (1977) Carbon dioxide fixation in chloroplasts isolated from CAM plants. In: Photosynthetic organelles, structure and function. Plant Cell Physiol.3 (special issue) 341–346Google Scholar
  21. Piazza, G.J., Smith, M.G., Gibbs, M. (1982) Characterization of the formation and distribution of photosynthetic products bySedum praealtum chloroplasts. Plant Physiol.70, 1748–1758Google Scholar
  22. Portis, A.R. (1981) Evidence of a low stromal Mg2+ concentration in intact chloroplasts in the dark. I. Studies with the ionophore A23187. Plant Physiol.67, 985–989Google Scholar
  23. Preiss, J., Ghosh, M.P., Wittkop, J. (1967) Regulation of the biosynthesis of starch in spinach leaf chloroplasts. In: Biochemistry of chloroplasts, vol. 2, pp. 131–152, Goodwin, T.W., ed. Academic Press, New York LondonGoogle Scholar
  24. Santarius, K.A., Ernst, R. (1967) Das Verhalten von Hill-Reaktion und Photophosphorylierung isolierter Chloroplasten in Abhängigkeit vom Wassergehalt. I. Wasserentzug mittels konzentrierter Lösungen. Planta73, 91–108Google Scholar
  25. Spalding, M.H., Edwards, G.E. (1980) Photosynthesis in isolated chloroplasts of the Crassulacean acid metabolism plantSedum praealtum. Plant Physiol.65, 1044–1048Google Scholar
  26. Wignarajah, K., Baker, N.R. (1981) Salt induced responses of chloroplast activities in species of differing salt tolerance. Photosynthetic electron transport inAster tripolium andPisum sativum. Physiol. Plant.51, 387–393Google Scholar
  27. Winter, K. (1973) CO2-Fixierungsreaktionen bei der SalzpflanzeMesembryanthemum crystallinum unter NaCl-Einfluß. Planta109, 135–145 (1973)Google Scholar
  28. Winter, K. (1975) Die Rolle des Crassulaceen-Säurestoffwechsels als biochemische Grundlage zur Anpassung von Halophyten an Standorte hoher Salinität. Dissertation, Technische Hochschule DarmstadtGoogle Scholar
  29. Winter, K. (1980) CO2 and water vapor exchange in the crassulacean acid metabolism plantKalanchoe pinnata during a prolonged light period. Plant Physiol.66, 917–921Google Scholar
  30. Winter, K., Lüttge, U. (1976) Balance between C3 and CAM pathway of photosynthesis. In: Water and plant life-problems and modern approaches, pp. 323–334, Lange, O.L., Kappen, L., Schulze, E.-D., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Winter, K., Tenhunen, J.D. (1982) Light-stimulated burst of carbon dioxide uptake following nocturnal acidification in the Crassulacean acid metabolism plantKalanchoe daigremontiana. Plant Physiol.70, 1718–1722Google Scholar
  32. Winter, K., Foster, J.G., Edwards, G.E., Holtum, J.A.M. (1982) Intracellular localization of enzymes of carbon metabolism inMesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics or performing Crassulacean acid metabolism. Plant Physiol.69, 300–307Google Scholar
  33. Wyn Jones, R.G., Storey, R. (1981) Betaines. In: The physiology and biochemistry of drought resistance in plants, pp. 171–204, Paleg, L.G., Aspinall, D., eds. Academic Press, Sydney New York London Toronto San FranciscoGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Barbara Demmig
    • 1
  • Klaus Winter
    • 1
  1. 1.Lehrstuhl für Botanik I and Lehrstuhl für Botanik II der UniversitätWürzburgFederal Republic of Germany

Personalised recommendations