pure and applied geophysics

, Volume 141, Issue 2–4, pp 221–247 | Cite as

Experimental simulation of plagioclase diagenesis atP-T conditions of 3.5 km burial depth

  • Stephen L. Karner
  • B. Charlotte Schreiber
Rocks and Rock Properties

Abstract

Dissolution of plagioclase under the physical conditions at shallow to intermediate burial depths is a prime candidate for secondary porosity generation in feldspathic siliciclastic sediments. The diagenetic behavior of granular aggregates of plagioclase feldspar and quartz has been investigated by experimentation performed in a Bridgeman-type pressure vessel. The experiments, each of two weeks duration, simulated pressure-temperature conditions approximating 3.5 km burial depth. By using a double-acting pore-fluid reservoir, solutions of various chemistries were cycled through samples composed of oligoclase or labradorite feldspar and quartz (90:10 wt% respectively).

Scanning electron microscope analysis of the post-experiment samples reveals dissolution features and precipitated products. Dissolution voids of ∼10 microns occur typically in areas of maximum stress such as crack-tips and grain contacts. Dissolution on a larger scale is exemplified by topographical smoothing of grain su faces. The dissolved species are subsequently reprecipitated as Ca-enriched overgrowths (possibly zeolites) and clays. These precipitates are found individually on the scale of 10 microns and collectively as surface coatings on both feldspar and quartz grains. Atomic absorption spectroscopic analyses of the pore fluid suggest that the fluid chemistry is consistent with the observed experimental precipitates.

These experiments show that clay coatings are unnecessary precursors to grain surface dissolution and that the diagenetic precipitation is not mineral selective. Also, the mass transfer of the dissolved species appears to be localized because grains displaying both dissolution and precipitation features are commonplace. Volume changes due to mineral transformation/alteration may increase secondary porosity if the dissolved species produced from dissolution are only partially involved in reprecipitation and the remaining dissolved material is flushed out by the pore fluids. However, if the mass transfer is primarily local then permeability would significantly decrease as precipitates may choke the pore throats.

Key Words

Experimental plagioclase diagenesis porosity permeability dissolution precipitates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Shaieb, Z., andShelton, J. (1981),Migration of Hydrocarbons and Secondary Porosity in Sandstones, Am. Assoc. Petrol. Geol. Bull.65, 2433–2436.Google Scholar
  2. Barnes, D. A., Girard, J.-P., andAronson, J. L.,K-Ar Dating of illite diagenesis in the Middle Ordovician St. Peters Sandstone, central Michigan Basin, USA: Implications for thermal history. InOrigin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D. W., and Pittman, E. D., eds.) (S.E.P.M. Spec. Pub.47, 1992) pp. 35–48.Google Scholar
  3. Bårth, T. (1991),Organic Acids and Inorganic Ions in Waters from Petroleum Reservoirs, Norwegian Continental Shelf: A Multivariate Statistical Analysis and Comparison with American Reservoir Formation Waters, Appl. Geochem.6, 1–15.Google Scholar
  4. Bjørlykke, K., Bergen, A., Elverhøi, O., andMalm, A. O. (1979),Diagenesis in the Mesozoic Sandstones from Spitzbergen and the North Sea, Geol. Rindschau68, 1151–1171.Google Scholar
  5. Boles, J. R.,Secondary porosity reactions in the Stevens Sandstone, San Joaquin Valley, California. InClastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Am. Assoc. Petrol. Geol. Mem.37, 1984) pp. 217–224.Google Scholar
  6. Bowker, K. A., andShuler, P. J. (1991),Carbon Dioxide Injection and Resultant Alteration of the Weber Sandstone, Rangely Field, Colorado, Am. Assoc. Petrol. Geol. Bull.75, 1489–1499.Google Scholar
  7. Burley, S. D., andMacQuaker, J. H. S.,Authigenic clays, diagenetic sequences and conceptual diagenetic models in contrasting basin-margin and basin-center North Sea Jurassic sandstones and mudstones. InOrigin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D. W., and Pittman, E. D., eds.) (S.E.P.M. Spec. Pub.47, 1992) pp. 81–110.Google Scholar
  8. Chester, F. M., andHiggs, N. G. (1992),Multimechanism Friction Constitutive Model for Ultrafine Quartz Gouge at Hypocentral Conditions, JGR (B)97, 1859–1870.Google Scholar
  9. Collins, A. G.,Geochemistry of Oilfield Waters (Elsevier, New York 1975) 495 pp.Google Scholar
  10. Connolly, C. A., Walter, L. M., Baadsgaard, H., andLongstaffe, F. J. (1990),Origin and Evolution of Formation Waters, Alberta Basin, Western Canada Sedimentary Basin. I. Chemistry, Appl. Geochem.5, 375–395.Google Scholar
  11. Curtiss, C. D. (1985),Clay Mineral Precipitation and Transformation during Burial Diagenesis, Phil. Trans. Roy. Soc. Lond.A315, 91–105.Google Scholar
  12. De Sitter, L. U. (1947),Diagenesis of Oil-field Brines, Am. Assoc. Petrol. Geol. Bull.31, 2030–2040.Google Scholar
  13. Dickey, P. A. (1968),Increasing Concentration of Subsurface Brines with Depth, Chem. Geol.4, 361–370.Google Scholar
  14. Drever, J. I.,Geochemistry of Natural Waters (Prentice-Hall, Englewood Cliffs 1982) 388 pp.Google Scholar
  15. Dutton, S. P., andLand, L. S. (1988),Cementation and Burial History of a Low-permeability Quartarenite, Lower Cretaceous Travis Peak Formation, East Texas, Geol. Soc. Am. Bull.100, 1271–1282.Google Scholar
  16. Ehrenberg, S. N. (1990),Relationship between Diagenesis and Reserevoir Quality in Sandstones of the Garn Formation, Haltenbanken, Mid-Norwegian Continental Shelf, Am. Assoc. Petrol. Geol. Bull.74, 1538–1558.Google Scholar
  17. Fisher, J. B., andBoles, J. R. (1990),Water-rock Interactions in Tertiary Sandstones, San Joaquin Basin, California, Chem Geol.82, 83–101.Google Scholar
  18. Helmold, K. P., andVan de Kamp, P. C.,Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California. InClastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem.37, 1984) pp. 239–275.Google Scholar
  19. Galloway, W. E. (1974),Deposition and Diagenetic Alteration of Sandstone in Northeast Pacific Arc-related Basins: Implications for Graywacke Genesis, Geol. Soc. Am. Bull.85, 379–390.Google Scholar
  20. Hajash, A., andBloom, M. A. (1991),Marine Diagenesis of Feldspathic Sand: A Flow-through Experimental Study at 200°C, 1 Kbar, Chem. Geol.89, 359–377.Google Scholar
  21. Houseknecht, D. W. (1984),Influence of Grain Size and Temperature on Intergranular Pressure Solution, Quartz Cementation, and Porosity in a Quartzose Sandstone, J. Sedim. Petrol.54, 348–361.Google Scholar
  22. Houseknecht, D. W. (1987),Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones, Am. Assoc. Petrol. Geol. Bull.71, 633–642.Google Scholar
  23. Kaiser, W. R.,Predicting reservoir quality and diagenetic history in the Frio Formation (Oligocene) of Texas. InClastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem.37, 1984) pp. 195–215.Google Scholar
  24. Land, L. S., Milliken, K. L., andMcBride, E. F. (1987),Diagenetic Evolution of Genozoic Sandstones, Gulf of Mexico Sedimentary Basis, Sedim. Geol.50, 195–225.Google Scholar
  25. Longstaffe, F. J., Tilley, B. J., Ayalon, A., andConnelly, C. A.,Controls on porewater evolution during sandstone diagenesis, western Canada sedimentary basin: An oxygen isotope perspective. InOrigin, Diagenesis, and Petrophysics of Clay Mineral in Sandstones (Houseknecht, D. W., and Pittman, E. D., eds.) (S.E.P.M. Spec. Pub.47, 1992) pp. 13–34.Google Scholar
  26. Loucks, R. G., Dodge, M. M., andGalloway, W. E.,Regional controls on diagenesis and reservoir quality in lower Tertiary sandstones along the Texas Gulf Coast. In Clastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem.37, 1984) pp. 15–45.Google Scholar
  27. Marone, C., Rubenstone, J., andEngelder, T. (1988),An Experimental Study of Permeability and Fluid Chemistry in an Artificially Jointed Marble, J. Geol. Res.93 (B), 13763–13775.Google Scholar
  28. Mathisen, M. E.,Diagenesis of Plio-pleistocene nonmarine sandstones, Cayagan Basin, Philippines: Early development of secondary porosity in volcanic sandstones. InClastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Am. Assoc. Petrol. Geol. Mem.37, 1984) pp. 177–193.Google Scholar
  29. McBride, E. F., Land, L. S., andMack, L. E. (1987),Diagenesis of Eolian and Fluvial Feldspathic Sandstones, Norphlet Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama, Am. Assoc. Petrol. Geol. Bull.71, 1019–1034.Google Scholar
  30. Milliken, K. L., McBride, E. F., andLand, L. S. (1989),Numerical Assessment of Dissolution versus Replacement in the Subsurface Destruction of Detrital Feldspars, Oligocene Frio Formation, South Texas, J. Sedim. Petrol.59, 740–757.Google Scholar
  31. Milliken, K. L. (1992),Chemical Behavior of Detrital Feldspars in Mudrocks versus Sandstones, Frio Formation (Oligocene), South Texas, J. Sedim. Petrol.62, 790–801.Google Scholar
  32. Moncure, G. K., Lahann, R. W., andSiebert, R. M.,Origin of secondary porosity and cement distribution in a sandstone/shale sequence from the Frio Formation (Oligocene). InClastic Diagenesis (McDonald, D. A., and Surdam, R. C., eds.) (Amer. Assoc. Petrol. Geol. Mem.37, 1984) pp. 151–161.Google Scholar
  33. Nesbitt, H. W., Macrae, N. D., andShotyk, W. (1991),Congruent and Incongruent Dissolution of Labradorite in Dilute, Acidic, Salt Solutions, J. Geol.99, 429–442.Google Scholar
  34. Overton, H. L. (1973);Water Chemistry Analysis in Sedimentary Basins, Soc. Prof. Well Log Anal. Annual Logging Symp., Trans No.14 (L), 22 pp.Google Scholar
  35. Petrovic, R., Berner, R. A., andGoldhaber, M. B. (1976),Rate Control in Dissolution of Alkali Feldspars—I: Study of Residual Feldspar Grains by X-ray Photoelectron Spectroscopy, Geochim. et Cosmochim. Acta40, 537–548.Google Scholar
  36. Richardson, S. M., andMcSween, Jr., H. Y.,Geochemistry: Pathways and Processes (Prentice-Hall, Englewood Cliffs 1989 488 pp.Google Scholar
  37. Rittenhouse, G. (1971),Pore-space Reduction by Solution and Cementation, Amer. Assoc. Petrol. Geol. Bull.55, 80–91.Google Scholar
  38. Schmidt, V., andMcDonald, D. A.,The role of secondary porosity in the course of sandstone diagenesis. InAspects of Diagenesis (Scholle, P. A., and Schluger, P. R., eds.) (S.E.P.M. Spec. Pub.26, 1979) pp. 175–201.Google Scholar
  39. Scholz, C. H., andKoczynski, T. A. (1979),Dilatancy Anisotropy and the Response of Rock to Large Cyclic Loads, JGR (B)84, 5525–5534.Google Scholar
  40. Schutjens, P. M. T. M. (1991),Experimental Compaction of Quartz Sand at Low Effective Stress and Temperature Conditions J. Geol. Soc. Lond.148, 527–539.Google Scholar
  41. Selley, R. C.,Elements of Petroleum Geology (W. H. Freeman and Co., New York 1985) 449 pp.Google Scholar
  42. Small, J. S., Hamilton, D. L., andHabesch, S. (1992a),Experimental Simulation of Clay Precipitation within Reservoir Sandstones I: Techniques and Examples, J. Sedim. Petrol.62, 508–519.Google Scholar
  43. Small, J. S., Hamilton, D. L., andHabesch, S. (1992b),Experimental Simulation of Clay Precipitation within Reservoir Sandstones II: Mechanism of Illite Formation and Controls on Morphology, J. Sedim. Petrol.62, 520–529.Google Scholar
  44. Smith, J. V.,Phase equilibria of plagioclase. InFeldspar Mineralogy (Ribbe, P. H., ed.) (Mineral. Soc. Amer. Rev. in Mineral Vol. 2, 1983) pp. 223–239.Google Scholar
  45. Stoessell, R. K., andPittman, E. D. (1990),Secondary Porosity Revisited: The Chemistry of Feldspar Dissolution by Carboxylic Acids and Anions, Am. Assoc Petrol. Geol. Bull.74, 1795–1805.Google Scholar
  46. Surdam, R. C., Crossey, L. J., Hagen, E. S., andHeasler, H. P. (1989),Organic-inorganic Interactions and Sandstone Diagenesis, Am. Assoc. Petrol. Geol. Bull.73, 1–23.Google Scholar
  47. Van Elsberg, J. M. (1978),A New Approach to Sediment Diagenesis. Part I: An Observed Relationship between Sonic Transit-time and Depth in the Tertiary Sediments of the mackenzie Delta; A Potential Exploration Tool. Part II: A Revised Concept of Sediment Diagenesis, Can. Petrol. Geol. Bull.26, 57–86.Google Scholar
  48. White, D. E.,Saline waters of sedimentary rocks. InFluids in Subsurface Environments (Young, A., and Galley, J. E., eds.) (Am. Assoc. Petrol. Geol. Mem.4, 1965) pp. 342–366.Google Scholar
  49. Yin, P., andSurdam, R. C. (1985),Naturally Enhanced Porosity and Permeability in the Hydrocarbon Reservoirs of the Gippsland Basin, Australia, Proc. of the First Enhanced Oil Recovery Symposium, 79–109.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Stephen L. Karner
    • 1
  • B. Charlotte Schreiber
    • 1
    • 2
  1. 1.Department of GeologyQueens CollegeFlushingUSA
  2. 2.Lamont Doherty Earth ObservatoryPalisadesUSA

Personalised recommendations