Skip to main content
Log in

NSD-1015 alters the gene expression of aromaticl-amino acid decarboxylase in rat PC12 pheochromocytoma cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aromaticl-amino acid decarboxylase (AADC) is involved in the synthesis of the putative neurotransmitters dopamine (DA), 5-hydroxytryptamine (5-HT), and trace amines some of which have been proposed as neuromodulators, such as 2-phenylethylamine and tryptamine. We report here that the gene expression of AADC can be regulated by the AADC inhibitor NSD-1015 in PC12 cells. The cells were treated with different doses of NSD-1015 (0.01–10 μM) for 3 days. Slot blot hybridization was performed to detect AADC mRNA and Western immunoblot to detect AADC protein. The cDNA probe for rat AADC was generated by reverse transcription from rat adrenal gland total RNA and was amplified by the polymerase chain reaction (PCR) method. The results demonstrated that NSD-1015 produced a concentration-dependent up-regulation in AADC mRNA levels which is followed by a stable increase in AADC protein. The results suggest that AADC is an enzyme that can be regulated at the level of gene expression. The finding may be of importance in the study of DA transmission and for an improved understanding of this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christenson, J. W., Dairman, W., and Udenfriend, S., 1972. On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase. Proc. Nat. Acad. Sci. U.S.A. 69:343–347.

    Google Scholar 

  2. Lovenberg, W., Weissbach, W., and Udenfriend, S., 1962. Aromaticl-amino acid decarboxylase.J. Biol. Chem. 237:89–93.

    Google Scholar 

  3. Boulton, A. A., 1976. Cerebral aryl alkyl aminergic mechanisms, inTrace Amines in the Brain. (Usdin, E. and Sandler, M., eds), pp 21–39. Marcel Dekker Inc. New York.

    Google Scholar 

  4. Brodie, B. B., Kuntzman, R., Hirch, C. W., and Costa, E., 1962. Effects of decarboxylase inhibition on the biosynthesis of brain monoamines.Life Sci. 1:81–84.

    Google Scholar 

  5. Langelier, P., Roberge, A. G., Boucher, R., and Poirier, L. J., 1973. Effects of chronically administered L-dopa in normal and lesioned cats.J. Pharmacol. Exp. Ther. 187:15–26.

    Google Scholar 

  6. Robins, E., Robins, J. M., Croninger, A. B., Moses, S. G., Spencer, J., and Hudgens, R. W., 1967. The low level of 5HTP decarboxylase in human brain.Biochem. Med. 1:240–251.

    Google Scholar 

  7. Lloyd, K. G., and Hornykiewicz, O., 1972. Occurrence and distribution of dopa decarboxylase in the human brain.J. Neurochem. 19:1549–1559.

    Google Scholar 

  8. Sacks, W., Vogel, W. H., Nagatsu, T., Lloyd, K. G., and Sandler, M., 1979. Round Table on: Is there Dopa decarboxylase in human brain? Pages 127–131,in Usdin, E., Kopin, I. J., and Barchas, J., (eds) Catecholamines: Basic and Clinical Fronners, Vol 1, Pergamon, New York.

    Google Scholar 

  9. Hadjiconstantinou, M., Rossetti, Z., Silvia, C., Krajnc, D., and Neff, N. H., 1988. Aromatic l-amino acid decarboxylase activity of the rat retina is modulated in vivo by environmental light.J. Neurochem. 51:1560–1564.

    Google Scholar 

  10. Zhu, M. Y., Juorio, A. V., Paterson, I. A., and Boulton, A. A., 1992. Regulation of aromatic 1-amino acid decarboxylase by dopamine receptors in the rat brain.J. Neurochem., 58:636–641.

    Google Scholar 

  11. Tanaka, T., Horio, Y., Taketoshi, M., Imamura, I., Ando-Yamamoto, M., Kangawa, K., Matsuo, H., Kuroda, M., and Waka, H., 1989. Molecular cloning and sequencing of a cDNA of rat dopa decarboxylase: partial amino acid homologies with other enzymes synthesizing catecholamines.Proc. Natl. Acad. Sci. USA 86:8142–8146.

    Google Scholar 

  12. Li, X-M., Juorio, A. V., Paterson, I. A., Walz, W., Zhu, M. Y., and Boulton, A. A., 1992. Gene expression of aromatic 1-amino acid decarboxylase in rat cultured glia cells.J. Neurochem. 59:1172–1175.

    Google Scholar 

  13. Li, X-M., Juorio, A. V., Paterson, I. A., Zhu, M. Y., and Boulton, A. A., 1992. Specific irreversible MAO B inhibitors stimulate gene expression of aromatic 1-amino acid decarboxylase in PC12 cells.J. Neurochem. 59, 2324–2327.

    Google Scholar 

  14. Gudehithlu, K. P., Duchemin, A. M., Silvia, C. P., Neff, N. H., and Hadjiconstantinou, M., 1992. Expression of cloned aromatic L-amino acid decarboxylase inXenopus laevis oocytes.Neurochem. Int. 21:275–279.

    Google Scholar 

  15. Hefti, F., Melamed, E., and Wurtman, R. J., 1981. The site of dopamine formation in rat striatum after L-DOPA administration.J. Pharmacol. Exp. Ther. 217:189–197.

    Google Scholar 

  16. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.

  17. Fainberg, A. P., and Vogelstein, B., 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.

    Google Scholar 

  18. Blaschko, H., 1959. The development of current concepts of catecholamine formation.Pharmac. Rev. 11:307–316.

    Google Scholar 

  19. Paterson, I. A., Juorio, A. V., and Boulton, A. A., 1990. 2-Phenylethylamine, a modulator of catecholamine transmission in the mammalian central nervous system?J. Neurochem. 55:1297.

    Google Scholar 

  20. Bowsher, R. R., and Henry, D. P., 1983. Decarboxylation ofp-tyrosine: a potential source ofp-tyramine in mammalian brain.J. Neurochem. 40:992–1002.

    Google Scholar 

  21. Levitt, M., Spector, A., Sjoerdsma, A., and Udenfriend, S., 1965. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea pig heart.J. Pharmac. Exp. Ther. 148:1–8.

    Google Scholar 

  22. Rossetti, Z. L., Silvia, C. P., Krajnc, D., Neff, N. H., and Hadjiconstantinou, M., 1990. Aromatic 1-amino acid decarboxylase is modulated by D1 dopamine receptors in rat retina.J. Neurochem. 54:787–791.

    Google Scholar 

  23. Buckland P. R., O'Donovan, M. C., and McGuffin, P., 1992. Changes in dopa decarboxylase mRNA but not tyrosine hydroxylase mRNA levels in rat brain following antipsychotic treatment.Psychopharmacology 108:98–102.

    Google Scholar 

  24. Rosengren, E., 1960. Are DOPA decarboxylase and 5-hydroxytryptophan decarboxylase individual enzymes?Acta Physiol. Scand. 49:364–369.

    Google Scholar 

  25. Awapara, J., Sandman, R. P., and Hanly, C., 1962. Activation of DOPA decarboxylase by pyridoxal phosphate.Arch. Biochem. Biophys. 98:520–525.

    Google Scholar 

  26. Tatton, W. G., and Greenwood, C. E., 1991. Rescue of dying neurons, a new action for deprenyl in MPTP parkinsonismJ. Neurosci. Res. 30:666–672.

    Google Scholar 

  27. Salo, P. T., and Tatton, W. G., 1992. Deprenyl reduces the death of motoneurons caused by axotomy.J. Neurosci. Res. 31:394–400.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XM., Juorio, A.V. & Boulton, A.A. NSD-1015 alters the gene expression of aromaticl-amino acid decarboxylase in rat PC12 pheochromocytoma cells. Neurochem Res 18, 915–919 (1993). https://doi.org/10.1007/BF00998277

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998277

Key Words

Navigation