Neurochemical Research

, Volume 18, Issue 8, pp 869–874 | Cite as

Octopamine receptor subtypes and their modes of action

  • Peter D. Evans
  • Sandra Robb


Octopamine receptor subclasses were first proposed to explain differences in the pharmacological profiles of a range of physiological responses to octopamine obtained in the extensor-tibiae neuromuscular preparation of the locust. Thus, OCTOPAMINE1 receptors which inhibit an endogenous myogenic rhythm, increase intracellular calcium levels. Also OCTOPAMINE2 receptors which modulate neuromuscular transmission in this preparation, increase the level of adenylate cyclase activity. The current status of this classification is reviewed by examining the pharmacology of responses to octopamine in a range of preparations. It is concluded that the distinction between OCTOPAMINE1 and OCTOPAMINE2 receptor types is still valid, but that OCTOPAMINE2 receptors exhibit some tissue specific variations. Studies on a clonedDrosophila octopamine/tyramine (phenolamine) receptor are discussed and illustrate many of the difficulties presently encountered in making a definitive classification of octopamine receptors. These include the possibilities that single receptors may activate multiple second messenger systems and that different agonists may differentially couple the same receptor to different second messenger systems.

Key Words

Octopamine receptors subtypes Drosophila 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans, P. D. 1980. Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15:317–473.Google Scholar
  2. 2.
    Evans, P. D. 1985. Octopamine. Pages 499–530,in Kerkut, G. A., and Gilbert, L. (eds), Comprehensive Insect Biochemistry, Physiology and Pharmacology, Pergamon Press, Oxford.Google Scholar
  3. 3.
    David, J. C., and Coulon, J.-F. 1985. Octopamine in invertebrates and vertebrates. A review. Prog. Neurobiol. 24:141–185.Google Scholar
  4. 4.
    Harmar, A. J. 1980. Neurochemistry of octopamine. Pages 97–149,in Mosnaim, A. D., and Wolff, M. E. (eds), Modern Pharmacology-Toxicology, Vol 12: Noncatecholic Phenylethylamines, Part 2, Marcel Dekker, New York and Basel.Google Scholar
  5. 5.
    Talamo, B. R. 1980. Function of octopamine in the nervous system. Pages 261–292,in Mosnaim, A. D., and Wolff, M. E. (eds), Modern Pharmacology-Toxicology, Vol. 12, Noncatecholic Phenylethylamines. Part 2, Marcel Dekker, New York and Basel.Google Scholar
  6. 6.
    Robertson, H. A. 1981. Octopamine-after a decade as a putative neuroregulator. Pages 47–73,in Youdim, M. B. H., Lovenberg, W., Sharman, D. F., and Lagnado, J. R. (eds), Essays in Neurochemistry and Neuropharmacology, vol. 5, Wiley, New York.Google Scholar
  7. 7.
    Williams, C. M., Couch, M. W., and Midgley, J. M. 1984. Natural occurrence and metabolism of the isomeric octopamines and synephrines. Pages 97–105,in Boulton, A. A., Baker, G. B., Dewhurst, W. G., and Sandler, M. (eds.), Neurobiology of the Trace Amines, The Humana Press, Clifton, New Jersey.Google Scholar
  8. 8.
    Evans, P. D. 1992. Molecular studies on insect octopamine receptors. Pages 286–296,in Pichon, Y. (ed.), Comparative Molecular Biology, Birkauser Verlag AG, Switzerland. 286–296.Google Scholar
  9. 9.
    Evans, P. D. 1981. Multiple receptor types for octopamine in the locust. J. Physiol. 318:99–122.Google Scholar
  10. 10.
    Evans, P. D., and O'Shea, M. 1978. The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. J. exp. Biol. 73:235–260.Google Scholar
  11. 11.
    Evans, P. D., and O'Shea, M. 1977. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature, Lond. 270:257–259.Google Scholar
  12. 12.
    O'Shea, M., and Evans, P. D. 1979. Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J. exp. Biol. 79:169–190.Google Scholar
  13. 13.
    Evans, P. D. 1984. Studies on the mode of action of octopamine, 5-hydroxytryptamine and proctolin on a myogenic rhythm in the locust. J. exp. Biol. 110:231–251.Google Scholar
  14. 14.
    Evans, P. D. 1984. A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. J. Physiol. (Lond.). 348:307–324.Google Scholar
  15. 15.
    Evans, P. D. 1984. The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J. Physiol. (Lond.). 348:325–340.Google Scholar
  16. 16.
    Evans, P. D. 1987. Phenyliminoimidazolidine derivatives activate both OCTOPAMINE1 and OCTOPAMINE2 receptor subtypes in locust skeletal muscle. J. exp. Biol. 129:239–250.Google Scholar
  17. 17.
    Orchard, I., and Lange, A. B. 1986. Pharmacological profile of octopamine receptors on the lateral oviducts of the locust,Locusta migratoria. J. Insect Physiol. 32:741–745.Google Scholar
  18. 18.
    Pannabecker, T., and Orchard, I. 1986. Pharmacological properties of octopamine-2 receptors in locust neuroendocrine tissue. J. Insect Physiol. 32:909–915.Google Scholar
  19. 19.
    Lafon-Cazal, M., and Bockaert, J. 1985. Pharmacological characterization of octopamine-sensitive adenylate cyclase in the flight muscle ofLocusta migratoria L. European J. Pharmacol. 119:53–59.Google Scholar
  20. 20.
    Morton, D. B. 1984. Pharmacology of the octopamine stimulated adenylate cyclase of the locust and tick CNS. Comp. Biochem. Physiol. 78C:153–158.Google Scholar
  21. 21.
    Wang, Z., Downer, R. G. H., Gole, J. W. D., and Orr, G. L. 1991. Characterization and pharmacological studies of an octopamine-sensitive adenylate cyclase from nerve cord ofLocusta migratoria. Arch. Int. Physiol. Biochimie. Biophys. 99:189–193.Google Scholar
  22. 22.
    Konings, P. N. M., Vullings, H. G. B., Van Gemert, W. M. J. B., DeLeeuw, R., Diederen, J. H. B., and Jansen, W. F. 1989. Octopamine-binding sites in the brain ofLocusta migratoria. J. Insect Physiol. 35:519–524.Google Scholar
  23. 23.
    Roeder, T., and Gewecke, M. 1990. Octopamine receptors in locust nervous tissue. Biochem. Pharmacol. 39:1793–1797.Google Scholar
  24. 24.
    Kaufmann, L., and Benson, J. A. 1991. Characterisation of a locust neuronal octopamine response. Soc. Neurosci. Abstracts 17:277.Google Scholar
  25. 25.
    Minhas, N., Gole, J. W. D., Orr, G. L., and Downer, R. G. H. 1987. Pharmacology of [3H]-mianserin binding in the nerve cord of the american cockroach,Periplaneta americana. Arch. Insect Biochem. Physiol. 6:191–201.Google Scholar
  26. 26.
    Hollingworth, R. M., and Johnstone, E. M. 1983. Pharmacology and toxicology of octopamine receptors in insects. Pages 187–192in Miyamoto J., and Kearney, P. C. (eds.), Pesticide Chemistry: Human Welfare and the Environment. Vol. 1, Pergamon Press, Oxford.Google Scholar
  27. 27.
    Platt, N., and Reynolds S. E. 1986. The pharmacology of the heart of a caterpillar, the tobacco hornworm,Manduca sexta. J. Insect Physiol. 32:221–230.Google Scholar
  28. 28.
    Arakawa, S., Gocayne, J. D., McCombie, W. R., Urquhart, D. A., Hall, L. M., Fraser, C. M., and Venter, J. C. 1990. Cloning, localization and permanent expression of aDrosophila octopamine receptor. Neuron 2:343–354.Google Scholar
  29. 29.
    Guillen, A., Haro, A., and Municio, A. M. 1989. A possible new class of octopamine receptors coupled to adenylate cyclase in the brain of the dipterousCeratitis capitata. Pharmacological characterization and regulation of3H-octopamine binding. Life Sciences 45:655–662.Google Scholar
  30. 30.
    Nathanson, J. A. 1985. Phenyliminoimidazolidines: Characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors. Mol. Pharmacol. 28:254–268.Google Scholar
  31. 31.
    Roeder, T. 1990. High-affinity antagonists of the locust neuronal octopamine receptor. Eur. J. Pharmacol. 191:221–224.Google Scholar
  32. 32.
    Harmar, A. J., and Horn, A. S. 1977. Octopamine-sensitive adenylate cyclase in cockroach brain: Effects of agonists, antagonists and guanylyl nucleotides. Molec. Pharmac. 13:512–520.Google Scholar
  33. 33.
    Orr, N., Orr, G. L., and Hollingworth, R. M. 1992. The Sf9 cell line as a model for studying insect octopamine-receptors. Insect Biochem. Molec. Biol. 22:591–597.Google Scholar
  34. 34.
    Gole, J. W. D., Orr, G. L., and Downer, R. G. H. 1987. Pharmacology of octopamine-, dopamine-, and 5-hydroxytryptamine-stimulated cyclic AMP accumulation in the corpus cardiacum of the american cockroach,Periplaneta americana. Arch. Insect Biochem. Physiol. 5:119–128.Google Scholar
  35. 35.
    Uzzan, A., and Dudai, Y. 1982. Aminergic receptors inDrosophila melanogaster: responsiveness of adenylate cyclase to putative neurotransmitters. J. Neurochem. 38:1542–1550.Google Scholar
  36. 36.
    Dudai, Y. 1982. High affinity octopamine receptors revealed inDrosophila by binding of [3H] octopamine. Neurosci. Lett. 28:163–167.Google Scholar
  37. 37.
    Roeder, T. 1992. A new octopamine receptor class in locust nervous tissue, the OCTOPAMINE3 (OA3) receptor. Life Sciences 50:21–28.Google Scholar
  38. 38.
    Schofield, P. K., and Treherne, J. E. 1985. Octopamine reduces potassium permeability of the glia that form the insect blood-brain barrier. Brain Res. 250:111–121.Google Scholar
  39. 39.
    Schofield, P. K., and Treherne, J. E. 1986. Octopamine sensitivity of the blood-brain barrier of an insect. J. exp. Biol. 123:432–439.Google Scholar
  40. 40.
    Jahagirdar, A. P., Milton, G., Viswanatha, T., and Downer, R. G. H. 1987. Calcium involvement in mediating the action of octopamine and hypertrehalosemic peptides on insect haemocytes. FEBS Letts. 219:83–87.Google Scholar
  41. 41.
    Saudou, F., Amlaiky, N., Plassat, J.-L., Borrelli, E., and Hen, R. 1990. Cloning and characterization of a Drosophila tyramine receptor. EMBO J. 9:3611–3617.Google Scholar
  42. 42.
    Downer, R. G. H. 1979. Trehalose production in isolated fat body of the American cockroach,Periplaneta americana. Comp. Biochem. Physiol. 62C:31–34.Google Scholar
  43. 43.
    Robb, S., Cheek, T. R., Venter, J. C., Midgley, J. M., and Evans, P. D. 1991. The mode of action and pharmacology of a clonedDrosophila phenolamine receptor. Pestic. Sci. 32:369–371.Google Scholar
  44. 44.
    Cheek, T. R., Jackson, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D. 1989. Simultaneous measurements of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of Fura-2 in cocultured cells. J. Cell Biol. 109:1219–1227.Google Scholar
  45. 45.
    Cotecchia, S., Kobilka, B. K., Daniel, K. W., Nolan, R. D., Lapetina, E. Y., Caron, M. G., Lefkowitz, R. J., and Regan, J. W. 1990. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J. Biol. Chem. 265:63–69.Google Scholar
  46. 46.
    Lai, J., Waite, S. L., Bloom, J. W., Yamamura, H. L., and Roeske, W. R. 1991. The m2 muscarinic acetylcholine receptors are coupled to multiple signalling pathways via pertussis toxinsensitive guanine nucleotide regulatory proteins. J. Pharmacol. exp. Ther. 258:938–944.Google Scholar
  47. 47.
    Yang, C. M., Chou, S.-P., and Sung, T.-C. 1991. Muscarinic receptor subtypes coupled to generation of different second messengers in isolated tracheal smooth muscle cells. Brit. J. Pharmacol. 104:613–618.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Peter D. Evans
    • 1
  • Sandra Robb
    • 1
  1. 1.AFRC Laboratory of Molecular Signilling, Dept. of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations