Measurement Techniques

, Volume 14, Issue 11, pp 1662–1669 | Cite as

Development of master instruments for measuring total and partial pressures in high and ultrahigh vacuum regions

  • M. A. Gulyaev
  • A. V. Eryukhin
Mechanical Measurements

Conclusions

  1. 1.

    A master instrument has been developed, investigated, and certified for reproducing the unit of pressure in total and partial absolute pressure range of 10−3–10−11 Pa (total pressure) and 10−3–10−6 Pa (partial pressure).

     
  2. 2.

    The apparatus consists of the following master devices; the GRAD cryogenic master device of second class; OIM master ionization pressure gauge of third class; the OGIP master device of third class for calibrating partial pressure gauges; and the ORU-2 master pressure reduction device of the second class.

     
  3. 3.

    The characteristics of the instruments are given in Table 4.

     
  4. 4.

    The limiting pressure obtained with the GRAD cryostatic device is (3–4)·10−11 Pa; it is the lowest pressure ever obtained in a device of this type.

     

Keywords

Physical Chemistry Analytical Chemistry Partial Pressure Lower Pressure Total Pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. A. Gulyaev and A. V. Eruykhin, Izmeritel'. Tekh., No. 11 (1967).Google Scholar
  2. 2.
    M. A. Gouliaev, A. V. Eryukhin, and V. V. Kouzmine, La Vide,25, No. 148–149 (1970).Google Scholar
  3. 3.
    M. A. Gulyaev and A. V. Eryukhin, Vacuum Measurement by the NTO Priborprom Device [in Russian], No. 54 (1965).Google Scholar
  4. 4.
    M. A. Gulyaev and A. V. Eryukhin, Vacuum Measurements [in Russian], Izd. Standartov, Moscow (1967), p. 148.Google Scholar
  5. 5.
    A. V. Eryukhin, Tr. Institutov Komiteta Standartov [in Russian], No. 85 (145), Moscow (1966).Google Scholar
  6. 6.
    A. V. Eryukhin, Papers read at the Seminar “Improved Efficiency in the Maintenance of Measuring Equipment” [in Russian], VNIIK, DNTPMIT, Moscow (1969).Google Scholar
  7. 7.
    E. S. Borovik, S. F. Grishin, and E. Ya. Grishina, Zh. Tekh. Fiz., 40 (1970).Google Scholar
  8. 8.
    E. S. Borovik, G. T. Nikolaev, and B. A. Sharevskii, Plasma Physics and the Problems of Controlled Thermonuclear Synthesis [in Russian], No. 4, 459 (1965).Google Scholar
  9. 9.
    W. D. Davis, J. of Vacuum Science and Technology,5, No. 4 (1968).Google Scholar
  10. 10.
    E. S. Borovik, S. F. Grishin, and B. G. Lazarev, Pribory i Tekh. Éksperim., No. 1 (1960).Google Scholar
  11. 11.
    É. Trendelenburg, Ultrahigh Vacuum [Russian translation], Mir, Moscow (1966).Google Scholar
  12. 12.
    P. E. Honig and H. J. Hook, RCA Rev.,21, 360 (1960).Google Scholar
  13. 13.
    P. A. Redhead, Rev. Sci. Instr.,31, No. 3 (1960).Google Scholar
  14. 14.
    A. V. Eryukhin, Tr. Institutov Komiteta Standartov, No. 66 (120) (1962).Google Scholar
  15. 15.
    A. Klopfer and W. Schmidt, Vacuum,10, No. 5 (1960).Google Scholar
  16. 16.
    P. G. Allen and B. Lang, Vacuum,13, No. 9 (1963).Google Scholar
  17. 17.
    R. D. Craig and E. H. Harden, Vacuum, No. 2 (1966).Google Scholar
  18. 18.
    J. H. Chubb and L. Gowland, Vacuum,17, No. 8 (1967).Google Scholar
  19. 19.
    F. O. Smetana, J. of Vacuum Science and Technology,3, No. 6 (1966).Google Scholar
  20. 20.
    L. E. Bergquist, Vacuum,18, No. 5 (1968).Google Scholar
  21. 21.
    A. V. Eryukhin and V. V. Kuz'min, Izmeritel'. Tekh., No. 5 (1970).Google Scholar
  22. 22.
    A. V. Eryukhin and V. V. Kuz'min, Izmeritel'. Tekh., No. 4 (1969).Google Scholar
  23. 23.
    A. V. Eryukhin and V. V. Kuz'min, Izmeritel'. Tekhnika, No. 6 (1969).Google Scholar
  24. 24.
    B. Fletcher and F. Watts, Vacuum,17, No. 8 (1967).Google Scholar
  25. 25.
    G. Meinke and G. Reich, J. of Vacuum Science and Technology,4, No. 6 (1967).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • M. A. Gulyaev
  • A. V. Eryukhin

There are no affiliations available

Personalised recommendations