Skip to main content
Log in

Formulation of Gyarmati's principle for heat conduction equation

Formulierung des Prinzips von Gyarmati für Wärmeleitprobleme

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Gyarmati's principle is formulated in various pictures for the heat conduction phenomenon in solid. Since the heat current density and the internal energy function can be given in three different pictures for heat conduction phenomena, we get the nine forms of the principle from which the heat conduction equation can be derived. This formulation has been shown using the generalized Γ picture. In the subsequent section the principle is formulated in proper Γ picture from which three proper pictures namely Fourier, entropy and energy follow.

Zusammenfassung

Das Prinzip von Gyarmati wird in verschiedenen Arten für Wärmeleitphänomene formuliert. Da die Wärmestromdichte und die innere Energie in drei verschiedenen Arten für Wärmeleitphänomene angegeben werden können, erhalten wir die neun Formen des Prinzips, von denen die Wärmeleitgleichung abgeleitet werden kann. In dieser Formulierung wird ein verallgemeinertes Γ-Bild verwendet. Im folgenden Teil wird das Prinzip in einem geeigneten Γ-Bild formuliert, von dem drei geeignete Bilder folgen, nämlich das Fourier-, das Entropie- und das Energie-Bild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ:

rate of entropy production

ψ:

dissipation potential function of thermodynamic forces only

Φ:

dissipation potential function of fluxes only

v:

volume of the system

x i :

thermodynamic forces

J i :

thermodynamic currents

f:

number of irreversible processes taking place in the system

LiK :

phenomenological coefficients representing conductivity of the material

RiK :

phenomenological coefficients representing resistances

ρ:

density of the material

a:

specific value of the extensive transport quantity

Γi :

state parameters, the gradients of which give rise to the thermodynamic forces

σi :

source density of ai

s:

specific entropy

T:

absolute temperature

J q :

heat current density vector

λ:

heat conductivity coefficient

Lqq :

phenomenological coefficient corresponding to heat conductivity coefficient

x q :

thermal dissipative force

σq :

entropy production due to heat transfer

u:

specific internal energy

LΓ :

phenomenological coefficient in Γ picture

cV :

specific heat at constant volume

References

  1. Gyarmati, I.: On the most general form of the thermodynamic integral principle. Z. Phys. Chemie, 239 (1968) 133–137

    Google Scholar 

  2. Gyarmati, I.: On the governing principle of dissipative processes and its extension to non-linear problem. Ann. Phys. 23 (1969) 353–378

    Google Scholar 

  3. Gyarmati, I.: Non-equilibrium thermodynamics, Field theory and variational principles: Springer-Verlag, Berlin, Heidelberg, New York (1970)

    Google Scholar 

  4. Gyarmati, I.: Generalization of GPDP to complex scalar fields, Ann. Phys. 31 (1974) 18–32

    Google Scholar 

  5. Onsager, L.: Reciprocal relations in irreversible processes-I, Phys. Rev. 37 (1931) 405–421

    Google Scholar 

  6. Onsager, L.: Reciprocal relations in irreversible processes-II, Phys. Rev. 38 (1931) 2265–2279

    Google Scholar 

  7. Parkas, H.: The reformulation of the Gyarmati Principle in a generalized “Γ” picture: Z. Phys. Chemie, 239 (1968) 124–132

    Google Scholar 

  8. Singh, P.: The application of the GPDP to thermohydrodynamic stability: D. Sc. dissertation, Hungarian Academy of Sciences, Budapest, 1973

    Google Scholar 

  9. Singh, P.: The application of the GPDP to Benard convection, Int. J. Heat Mass Transfer 19 (1976) 581–588

    Google Scholar 

  10. Singh, P.: An approximate technique to thermohydrodynamic stability problem on the basis of GPDP; J. Non-Equilib. Thermodyn. 1 (1976) 105–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P. Formulation of Gyarmati's principle for heat conduction equation. Wärme- und Stoffübertragung 13, 39–45 (1980). https://doi.org/10.1007/BF00997631

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997631

Keywords

Navigation