Advertisement

Theoretical Medicine

, Volume 14, Issue 2, pp 153–165 | Cite as

Is the mind-body interface microscopic?

  • Otto E. Rössler
  • Reimara Rössler
Article

Abstract

This paper puts forward the hypothesis that consciousness might be linked to matter in a way which is more sophisticated than the traditional macroscopic Cartesian hypothesis suggests.

Advances in the biophysics of the nervous system, not only on the level of its macroscopic functioning but also on the level of individual ion channels, have made the question of ‘how finely’ consciousness is tied to matter and its dynamics more important. Quantum mechanics limits the attainable resolution and puts into doubt the idea of an infinitely fine-woven attachment. A recent approach to physics rekindles such a rationalist hope. ‘Endophysics’ focuses on the global implications of microscopic computer simulations of chemical and biophysical processes. A complete ‘artificial universe’ can be set up in the computer. It produces non-classical and nonlocal effects inside — on the ‘interface’ that exists between an internal observer (‘fluid neuron’) and the rest of the world. This interface is finer than any brain property to which the status of the mind-body interface has been attributed hitherto. A new class of experiments becomes possible in the artificial world and, by analogy, in the real world. Magnetic resonance imaging experiments, routinely performed under open-loop conditions, can be repeated under psychophysical (closed-loop) conditions — in search for microscopically induced changes in the perceived and measured structure of the world.

Key words

consciousness endophysics interface magnetic resonance imaging mindbody problem molecular-dynamics simulations micro psychophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Descartes R.Meditationes de Prima Philosophia. Paris: Soly, 1641.Google Scholar
  2. 2.
    Levinas E.Le Temps et l'Autre. Montpellier: Fata Morgana, 1946.Google Scholar
  3. 3.
    Hofstadter DR.Gödel, Escher, Bach — An Eternal Golden Braid. New York: Basic Books, 1979.Google Scholar
  4. 4.
    Kampis G.Self-Modifying Systems in Biology and Cognitive Science. Oxford: Pergamon Press, 1991.Google Scholar
  5. 5.
    Rosen R.Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. New York: Columbia University Press, 1991.Google Scholar
  6. 6.
    Rössler OE. Deductive biology — some cautious steps.Bull Math Biol 1978; 40:45–58.Google Scholar
  7. 7.
    Rössler OE. An artificial cognitive-plus-motivational system.Progress in Theoretical Biology 1981;6:147–60.Google Scholar
  8. 8.
    Rössler OE. Adequate locomotion strategies for an abstract organism in an abstract environment — a relational approach to brain function. In: Conrad M, Güttinger W, DalCin M, eds.Physics and Mathematics of the Nervous System. Berlin: Springer-Verlag, 1974:342–69. (Lecture Notes in Biomathematics; Vol 4).Google Scholar
  9. 9.
    Rössler OE. Artificial cognition plus motivation and hippocampus. In: Seifert W, ed.Neurobiology of the Hippocampus. New York: Academic, 1983:573–88.Google Scholar
  10. 10.
    Rössler OE, Kampis G, Nadler W, Musterle W, Schapiro B, Urban P. Highly parallel implementation of autonomous direction optimizer with cognition. [Abstract].Biophys J 1989;57:194a.Google Scholar
  11. 11.
    Rössler OE. Interactional bifurcations in human interaction — A formal approach. In: Tschacher W, Schiepek G, Brunner EJ, eds.Self-Organization and Clinical Psychology. New York: Springer-Verlag, 1992:229–36.Google Scholar
  12. 12.
    Leibniz GW.Vernunftprinzipien der Natur und der Gnade; Monadologie. [1714]. [French-German ed]. Hamburg: Meiner, 1969.Google Scholar
  13. 13.
    Tolman EC. Cognitive maps in rats and men.Psychol Rev 1948;55:189–208.Google Scholar
  14. 14.
    O'Keefe J, Nadel L.The Hippocampus as a Cognitive Map. Oxford: Oxford University Press, 1978.Google Scholar
  15. 15.
    Rössler OE. An artificial cognitive map system.Biosystems 1981;13:203–9.Google Scholar
  16. 16.
    Kosslyn SM.Image and Mind. Cambridge, MA: Harvard University Press, 1980.Google Scholar
  17. 17.
    Boltzmann L.Vorlesungen über Gastheorie. Vol 2. Leipzig: Barth, 1898.Google Scholar
  18. 18.
    Boltzmann L. Über die Frage nach der objektiven Existenz der Vorgänge in der unbelebten Natur.Sitzungsberichte der kaiserlichen Akademie der Wissenschaften [Vienna] Mathematisch-naturwissenschaftliche Klasse 1897;60(11a):83–114.Google Scholar
  19. 19.
    Prigogine I, Stengers I.La Nouvelle Alliance. Paris: Gallimard, 1979.Google Scholar
  20. 20.
    Neher E, Sakmann B. Single-channel current recorded from membrane of denervated frog fibers.Nature 1976;260:799–801.Google Scholar
  21. 21.
    Catterall WA. Molecular properties of voltage-sensitive sodium channels.Annu Rev Biochem 1986;55:953–85.Google Scholar
  22. 22.
    Rössler OE. Endophysics. In: Casti JL, Karlqvist A, eds.Real Brains, Artificial Minds. Amsterdam: North-Holland, 1987:25–46.Google Scholar
  23. 23.
    Teich WG, Mahler G. Information processing at the molecular level: possible realizations and physical constraints. In Zurek WH, ed.Complexity, Entropy and the Physics of Information. Redwood City, CA: Addison-Wesley, 1990:289–300.Google Scholar
  24. 24.
    Rössler OE. Chemical automata in homogeneous and reaction-diffusion kinetics. In: Conrad M, Güttinger W, DalCin M, eds.Physics and Mathematics of the Nervous System. Berlin: Springer-Verlag, 1974:399–418. (Springer Lecture Notes in Biomathematics; Vol. 4).Google Scholar
  25. 25.
    Conrad M. Molecular information processing in the central nervous system. In: Conrad M, Güttinger W, DalCin M, eds.Physics and Mathematics of the Nervous System. Berlin: Springer-Verlag, 1974:108–27. (Springer Lecture Notes in Biomathematics; Vol 4).Google Scholar
  26. 26.
    Rössler OE. Boscovich covariance. In: Casti JL, Karlqvist A, eds.Beyond Belief: Randomness, Prediction and Explanation in Science. Boca Raton, FL: CRC Press, 1991:69–87.Google Scholar
  27. 27.
    Brickmann J, Polymeropoulos EE. Molecular dynamics of ion transport through transmembrane model channels.Annu Rev Biophys Biophys Chem 1985;14:315–30.Google Scholar
  28. 28.
    Rössler OE. A chaotic I-D gas — some inplications. In Kim YS, Zachary WW, eds.The Physics of Phase Space. Berlin: Springer-Verlag, 1987:9–11. (Springer Lecture Notes in Physics; Vol 278).Google Scholar
  29. 29.
    Alder BJ, Wainwright TE. Phase transitions for a hard-sphere system.Journal of Chemical Physics 1957;27:1208–9.Google Scholar
  30. 30.
    Kapral R, Lawniczak A, Masiar P. Oscillations and waves in a reactive lattice-gas automaton.Physical Review Letters 1991;66:2539–42.Google Scholar
  31. 31.
    Rössler OE. Explicit observers. In: Plath PJ, ed.Optimal Structures in Heterogeneous Reaction Systems. Berlin: Springer-Verlag, 1989:123–38.Google Scholar
  32. 32.
    Laria D, Ciccotti G, Ferrario M, Kapral R.Molecular-Dynamics Study of Adiabatic Proton Transfer Reactions in Solution. Toronto: Department of Chemistry, University of Toronto, 1992 (unpublished manuscript).Google Scholar
  33. 33.
    Boltzmann L.Vorlesungen über Gastheorie. 2nd ed. Leipzig: Barth, 1910.Google Scholar
  34. 34.
    Zeh HD.The Physical Basis of the Direction of Time. Berlin: Springer-Verlag, 1989.Google Scholar
  35. 35.
    Boscovich RJ. De spatio et tempore, ut a nobis cognoscuntur. [1755]. In: Child JM, ed.R.J. Boscovich, A Theory of Natural Philosophy. [Latin-English Edition of Theoria Philosophiae Naturalis, 2nd ed, Venice 1763, Appendix B]. Chicago: Open Court, 1922:404–9.Google Scholar
  36. 36.
    Rössler OE. Endophysik — Die Welt des inneren Beobachters. Berlin: Merve, 1992.Google Scholar
  37. 37.
    Bialynicki-Birula I. Does measurement reverse the direction of intrinsic time?Physica B 1988;151:302–5.Google Scholar
  38. 38.
    Bell JS. On the Einstein-Podolsky-Rosen paradox.Physics 1964;1:195–200.Google Scholar
  39. 39.
    Rössler OE. Anaxagoras' idea of the infinitely exact chaos. In: Marx G, ed.Teaching Nonlinear Phenomena. Vol II. Veszprém: [Hungarian] National Center for Educational Technology Publications, 1987:99–113.Google Scholar
  40. 40.
    Galouye DF.Welt am Draht. Munich: Heyne, 1965.Google Scholar
  41. 41.
    Fechner GT.Elemente der Psychophysik. Leipzig: Breitkopf und Hästel, 1860.Google Scholar
  42. 42.
    Sommerfeld A.Atombau und Spektrallinien. Vol II. 4th ed, [1931]. Frankfurt-Main: Harri Deutsch, 1978.Google Scholar
  43. 43.
    Rössler OE. Four open problems in four dimensions. In: Baier G, Klein M, eds.A Chaotic Hierarchy. Singapore: World Scientific, 1991:365–9.Google Scholar
  44. 44.
    von Klitzing L, Gerhard H, Benthin U, Jörg J. Statische NMR-Magnetfelder verändern die somatosensibel evozierten Potentiale beim Menschen.EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 1987;18:43–6.Google Scholar
  45. 45.
    Stojan L, Sperber D, Dransfeld K. Influence of high steady magnetic fields on the electrical activity of the electric fishApteronotus.Z Naturforsch [C] 1990;45:303–5.Google Scholar
  46. 46.
    Welker HA, Semm P, Willig RP, Commentz JC, Wiltschko W, Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland.Exp Brain Res 1983;50:426–32.Google Scholar
  47. 47.
    Maret G, Dransfeld K. Biomolecules and polymers in high steady magnetic fields.Topics in Applied Physics 1985;57:143–204.Google Scholar
  48. 48.
    Feinendegen LE, Mühlensiepen H. Effect of static magnetic field on cellular metabolism in the living mouse.Endeavour 1988;12:119–23.Google Scholar
  49. 49.
    Liburdy RP, Tenforde TS. Membrane responses to magnetic and electromagnetic fields. In: Maret G, Boccara N, Kiepenheuer J, eds.Biophysical Effects of Steady Magnetic Fields. Berlin: Springer-Verlag 1986:44–51. (Springer Proceedings in Physics; Vol 11).Google Scholar
  50. 50.
    Doncel MG. From magnet to time reversal. In: Doncel MG, Hermann A, Michel L, Pais A, eds.Symmetry in Physics (1600–1980). Barcelona: Universitat Autonoma de Barcelona Bellaterra, 1987:409–29.Google Scholar
  51. 51.
    Lorentz HA.The Theory of Electrons and Its Application to the Phenomena of Light and Radiant Heat. [1909]. New York: Dover, 1952.Google Scholar
  52. 52.
    Deutsch D. Three connections between Everett's interpretation and experiment. In: Penrose R, Isham CJ, eds.Quantum Concepts in Space and Time. Oxford: Clarendon, 1986:215–25.Google Scholar
  53. 53.
    Fisher SS. Virtual interface environments. In: Laurel B, ed.The Art of Human-Computer Interface Design. Menlo Park: Addison Wesley, 1990:423–39.Google Scholar
  54. 54.
    Primas H.Chemistry, Quantum Mechanics and Reductionism. Berlin: Springer-Verlag, 1981.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Otto E. Rössler
    • 1
  • Reimara Rössler
    • 2
  1. 1.Division of Theoretical ChemistryUniversity of TübingenTübingenGermany
  2. 2.Medical PoliclinicUniversity of TübingenTübingenGermany

Personalised recommendations