Skip to main content
Log in

Self-organization: The basic principle of neural functions

  • Published:
Theoretical Medicine Aims and scope Submit manuscript

Abstract

Recent neurophysiological observations are giving rise to the expectation that in the near future genuine biological experiments may contribute more than will premature speculations to the understanding of global and cognitive functions. The classical reflex principle — as the basis of neural functions — has to yield to new ideas, like autopoiesis and/or self-organization, as the basic paradigm in the framework of which the essence of the neural can be better understood. Neural activity starts in the very earliest stages of development well before receptors and afferent input become functional. Under suitable conditions, both in nervous tissue cultures and in embryonic tissue recombination experiments, the conditions of such initial autopoietic activity can be studied. This paper tries to generalize this elementary concept for various neural centers, notably for the spinal segmental apparatus and the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maturana H, Varela F.Autopoiesis and Cognition. Dordrecht: Reidel, 1980.

    Google Scholar 

  2. Zeleny M.Autopoiesis: A Theory of Living Organizations. New York: Elsevier/North-Holland, 1981.

    Google Scholar 

  3. Katzir-Katchalsky AK, Rowland V, Blumenthal R. Dynamic patterns of brain cell assemblies.Neuroscience Research Program Bulletin 1974;12:3–187.

    Google Scholar 

  4. Pryer W.Die spezielle Physiologie des Embryos. Leipzig: Griebens Verlag, 1885.

    Google Scholar 

  5. Hamburger V, Wenger E, Oppenheim R. Motility in the chick embryo in the absence of sensory input.J Exp Zool 1966;162:133–60.

    Google Scholar 

  6. Gähwiler BH. Excitatory action of opioid peptides and opiates on cultured hippocampal pyramidal cells.Brain Res 1980;104:193–203.

    Google Scholar 

  7. Gähwiler BH. Development of acute tolerance during exposure of hippocampal explants to an opioid peptide.Brain Res 1981;217:196–200.

    Google Scholar 

  8. Gähwiler BH. Das kultivierte Gehirn.Neue Zürcher Zeitung 1988;(256):73.

    Google Scholar 

  9. Weiss P. The deplantation of fragments of nervous system in amphibians. I. Central reorganization and formation of nerves.J Exp Zool 1950;113:397–461.

    Google Scholar 

  10. Székely G, Szentágothai J. Experiments with “Model nervous systems”.Acta Biologica Academiae Scientiarum Hungaricae 1962;12:253–69.

    Google Scholar 

  11. Székely G, Czéh G. Activity of spinal cord fragments and limbs deplanted in the dorsal fin of urodele larvae.Acta Physiologica Academiae Scientiarum Hungaricae 1971;40:303–12.

    Google Scholar 

  12. Harth EM, Csermely TJ, Beek B, Lindsay RD. Brain functions and neural dynamics.J Theor Biol 1970;26:93–120.

    Google Scholar 

  13. Wilson HR, Cowan JD. Excitatory and inhibitory interaction in focalized populations of model neurons.Biophys J 1972;12:1–24.

    Google Scholar 

  14. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.Kybernetik 1973;13:55–80.

    Google Scholar 

  15. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus.Nature 1988;336:170–3.

    Google Scholar 

  16. Eccles JC, Ito M, Szentágothai J.The Cerebellum as a Neuronal Machine. New York: Springer-Verlag, 1967.

    Google Scholar 

  17. Eccles JC. The cerebellum as a computer; Patterns in space and time.J Physiol (Lond) 1973;229:1–32.

    Google Scholar 

  18. Ito M.The Cerebellum and Neural Control. New York: Raven Press, 1984.

    Google Scholar 

  19. Ramon y Cajal S.Les Nouvelles Idées sur la Structure du Système Nerveux chez l'Homme et chez les Vertèbres. Paris: Reinwald et Cie, 1894.

    Google Scholar 

  20. Szentágothai J. The modular architectonic principle of neural centers.Rev Physiol Biochem Pharmacol 1983;98:11–61.

    Google Scholar 

  21. Rakic P. Local circuit neurons.Neuroscience Research Program Bulletin 1976;13:1–319.

    Google Scholar 

  22. Schmitt FO, Dew P, Smith BH. Electronic processing of information by brain cells.Science 1976;93:114–20.

    Google Scholar 

  23. Lábos E. Theoretical considerations of local neuron circuits and their triadic synaptic arrangements (TSA) in subcortical nuclei.J Neurosci Res 1977;3:1–10.

    Google Scholar 

  24. Edelman GM, Finkel LH. Neuronal group selection in the cerebral cortex. In: Edelman GM, Cowan WM, Gall WE, eds.Dynamic Aspects of Neocortical Function. New York: John Wiley, 1984:653–95.

    Google Scholar 

  25. Szentágothai J. Downward causation?Annu Rev Neurosci 1984;7:1–11.

    Google Scholar 

  26. Karten HJ. The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon.Ann N Y Acad Sci 1969;167:164–79.

    Google Scholar 

  27. Glezer II, Jacobs MS, Morgane PI. Implications of the “initial brain” concept for brain evolution in Cetacea.Behavioral and Brain Sciences 1988;11:75–89.

    Google Scholar 

  28. Swindale NV. Is the cerebral cortex modular?Trends Neurosci 1990;13:487–92.

    Google Scholar 

  29. Goldman-Rakic PS, Schwartz MI. Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in Primates.Science 1984;216:755–57.

    Google Scholar 

  30. Mountcastle VB. An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB, eds.The Mindful Brain. Cambridge, MA: MIT Press, 1978:7–50.

    Google Scholar 

  31. Edelman GM. Group selection and phasic signaling: a theory of higher brain function. In: Edelman GM, Mountcastle VB, eds.The Mindful Brain. Cambridge, MA: MIT Press, 1978:51–100.

    Google Scholar 

  32. Hamburger V. The developmental history of the motor neuron.Neuroscience Research Program Bulletin 1977;15:1–37.

    Google Scholar 

  33. Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.Science 1988;242:1654–64.

    Google Scholar 

  34. Szentágothai J, Érdi P. Self-organization in the nervous system.Journal of Social and Biological Structures 1989;12:367–84.

    Google Scholar 

  35. Pellionisz A, Llinas R. Tensor network theory of the metaorganization of functional geometries in the CNS.Neuroscience 1985;16:245–74.

    Google Scholar 

  36. Goldman-Rakic PS, Funahashi S, Bruce CJ. Neocortical memory circuits.Quarterly Journal of Quantitative Biology 1990; 55:1025–38.

    Google Scholar 

  37. Gray CM, Konig P, Engel AW, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature 1989;338:344.

    Google Scholar 

  38. Malsburg E von der, Schneider W. A neural cocktail party processor.Biol Cybern 1986;54:29–40.

    Google Scholar 

  39. Érdi P. Hierarchical thermodynamic approach to the brain.Int J Neurosci 1983;20:193–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szentágothai, J. Self-organization: The basic principle of neural functions. Theor Med Bioeth 14, 101–116 (1993). https://doi.org/10.1007/BF00997270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997270

Key words

Navigation