Advertisement

Die Wirkung von Pentobarbital auf die Zelltätigkeit des Nucleus Ruber

  • G. Gogolák
Article

Schlüsselwörter

Pentobarbital Kaninchen Neuronentätigkeit Nucleus ruber Cerebellum 

The action of pentobarbital on the activity of single neurones of the red nucleus

Summary

The rhythmic electrical activity of the cerebellum and the electrical activity of single red nucleus neurones were recorded simultaneously in rabbits under pentobarbital anaesthesia. The following results were obtained:
  1. 1.

    Under pentobarbital, the units of the red nucleus discharge in regular bursts synchronous with the regular, barbiturate-induced electrical activity of the red nucleus and the cerebellum.

     
  2. 2.

    The bursts of the red nucleus neurones are correlated with the positive peak of the red nucleus rhythm as well as the positive peak of the membrane oscillations of single red nucleus neurones.

     
  3. 3.

    Calculations were carried out in order to determine how discharge rate and duration of bursts of single red nucleus neurones as well as frequency of red nucleus rhythm depend on pentobarbital concentration in blood.

     

The nature of the barbiturate-induced red nucleus rhythm is discussed on the basis of these findings.

Key-Words

Pentobarbital Rabbit Single Neurone Activity Red Nucleus Cerebellum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andersen, P., Sears, T. A.: The role of inhibition in the phasing of spontaneous thalamo-cortical discharge. J. Physiol. (Lond.)173, 459–480 (1964).Google Scholar
  2. Angaut, P., Guibaud, G., Reymond, M. C.: An electrophysiological study of the cerebellar projections to the nucleus ventralis lateralis of thalamus in the cat. I. Nuclei fastigii et interpositus. J. comp. Neurol.134, 9–20 (1968).Google Scholar
  3. Bell, C. O., Dow, R. S.: Cerebellar circuitry. Neurosciences Res. Progr. Bull.5, 121–222 (1967).Google Scholar
  4. Bloedel, J. R., Burton, J. E.: Electrophysiological evidence for a mossy fiber input to the cerebellar cortex activated indirectly by collaterals of spinocerebellar pathways. J. Neurophysiol.33, 308–320 (1970).Google Scholar
  5. —, Roberst, W. J.: Functional relationship among neurones of the cerebellar cortex in the absence of anesthesia. J. Neurophysiol.32, 75–84 (1969).Google Scholar
  6. Brodal, A.: The cerebellum of the rabbit. A topographical atlas of the folia as revealed in transverse sections. J. comp. Neurol.72, 63–81 (1940).Google Scholar
  7. Brodie, B. B., Burns, J. J., Mark, L. C., Lief, P. A., Bernstein, E., Papper, E. M.: The fate of pentobarbital in man and dog and a method for its estimation in biological material. J. Pharmacol. exp. Ther.109, 26–34 (1953).Google Scholar
  8. Brookhart, J. M., Moruzzi, G., Snider, R. S.: Origin of cerebellar waves. J. Neurophysiol.14, 181–190 (1951).Google Scholar
  9. Carpenter, M. B.: A study of the red nucleus in the rhesus monkey. J. comp. Neurol.105, 195–249 (1956).Google Scholar
  10. Cohen, D., Chambers, W. W., Sprague, J. M.: Experimental study of the efferent projections from the cerebellar nuclei to the brain stem of the cat. J. comp. Neurol.109, 233–259 (1958).Google Scholar
  11. Davis, R.: Brachio-rubral and rubro-brachial activity in the cat. Brain Res.15, 157–173 (1969).Google Scholar
  12. Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  13. Evarts, E. V., Thach, W. T.: Motor mechanisms of the CNS: Cerebrocerebellar interrelations. Ann. Rev. Physiol.31, 451–498 (1969).Google Scholar
  14. Gahm, N. H., Sutin, J.: The relation of the subthalamic and habenular nuclei to oscillating slow wave activity in the midbrain ventral tegmental area. Brain Res.11, 507–521 (1968).Google Scholar
  15. Gogolák, G., Liebeswar, G., Stumpf, Ch.: Action of drugs on the electrical activity of the red nucleus. Electroenceph. clin. Neurophysiol.27, 296–303 (1969).Google Scholar
  16. — — —, Williams, H. L.: The relationship between barbiturate-induced activities in the cerebellum and the red nucleus of the rabbit. Electroenceph. clin. Neuro-physiol.29, 67–73 (1970).Google Scholar
  17. —, Stumpf, Ch., Petsche, H., Šterc, J.: The firing pattern of septal neurons and the form of the hippocampal theta wave. Brain Res.7, 201–207 (1968).Google Scholar
  18. Goldstein, A., Aronow, L.: The duration of action of thiopental and pentobarbital. J. Pharmaool. exp. Ther.128, 1–14 (1960).Google Scholar
  19. Green, J. D.: A simple microelectrode device for recording from the central nervous system. Nature (Lond.)182, 962 (1958).Google Scholar
  20. Herz, A., Fuster, J.: Über die Wirkung von Barbituraten und Amphetamin auf die Entladungstätigkeit corticaler Neurone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.249, 146–161 (1964).Google Scholar
  21. Hinman, A., Carpenter, M. B.: Efferent fiber projections of the red nucleus in the cat. J. comp. Neurol.113, 61–82 (1952).Google Scholar
  22. Jansen, J., Brodal, H.: Das Kleinhirn. Handbuch der mikroskopischen Anatomie, Bd. IV/I. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  23. Kato, R., Takanaka, A., Onoda, K.: Individual difference in the effect of drugs in relation to the tissue concentration of drugs. Jap. J. Pharmacol.19, 260–267 (1969).Google Scholar
  24. Massion, J.: The mammalian red nucleus. Physiol. Rev.47, 383–436 (1967).Google Scholar
  25. —: Le noyau ventrolatéral, structure motrice thalamique. Lavai méd.40, 411–421 (1969).Google Scholar
  26. —, Albe-Fessard, D.: Dualité des voies sensorielles afférentes contrôlant l'activité du noyau rouge. Electroenceph. clin. Neurophysiol.15, 435–454 (1963).Google Scholar
  27. Murphy, J. T., Sabah, N. H.: Spontaneous firing of cerebellar Purkinje cells in decerebrate and barbiturate anesthetized cats. Brain Res.17, 515–519 (1970).Google Scholar
  28. Remmer, H.: Die Ursache der Gewöhnung an oxydable Barbiturate. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.244, 311–333 (1963).Google Scholar
  29. Sakata, H., Ishijima, T., Toyoda, Y.: Single unit studies on ventrolateral nucleus of the thalamus in cat: its relation to the cerebellum, motor cortex and basal ganglia. Jap. J. Physiol.16, 42–60 (1966).Google Scholar
  30. Sawyer, Ch. H., Everett, J. W., Green, J. D.: The rabbit diencephalon in stereotaxic coordinates. J. comp. Neurol.101, 801–824 (1954).Google Scholar
  31. Schimmerl, G., Stumpf, Ch.: Die Tätigkeit des Nucleus ruber nach Verabreichung von Barbituraten und Meprobamat. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.235, 33–40 (1958).Google Scholar
  32. Toyama, K., Tsukahara, N., Udo, M.: Nature of the cerebellar influences upon the red nucleus neurones. Exp. Brain Res.4, 292–309 (1968).Google Scholar
  33. Trembly, B., Sutin, J.: Slow wave activity in the ventral tegmental area of Tsai related to barbiturate anesthesia. Exp. Neurol.5, 120–130 (1962).Google Scholar
  34. Tsukahara, N.: Common activation of the red nucleus and the thalamus from the cerebellar nucleus. 23 Internat. Congr. Physiol. Sc., 1965.Google Scholar
  35. —, Toyama, K., Kosaka, K.: Electrical activity of red nucleus investigated with intracellular microelectrodes. Exp. Brain Res.4, 18–33 (1967).Google Scholar
  36. Uno, M., Yoshida, M., Hirota, I.: The mode of cerebello-thalamic relay transmission investigated with intracellular recordings from cells of the ventrolateral nucleus of cat's thalamus. Exp. Brain Res.10, 121–139 (1970).Google Scholar
  37. Verzeano, M., Calma, I.: Unit activity in spindle bursts. J. Neurophysiol.17, 417 to 428 (1954).Google Scholar
  38. —, Naquet, R., King, E. E.: Action of barbiturates and convulsants on unit activity of diffusely projecting nuclei of thalamus. J. Neurophysiol.18, 502–512 (1955).Google Scholar
  39. Wells, J., Sutin, J.: Trigeminal and pretectal influences upon slow-wave activity. of the ventral tegmental area in the cat. Exp. Neurol.7, 355–365 (1963).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • G. Gogolák
    • 1
    • 2
  1. 1.Pharmakologisches Institut der Universität WienDeutschland
  2. 2.Institut für Hirnforschung der Österreichischen Akademie der WissenschaftenDeutschland

Personalised recommendations