Naunyn-Schmiedebergs Archiv für Pharmakologie

, Volume 270, Issue 3, pp 248–261 | Cite as

Aktivierung des isolierten Gefäßmuskelpräparates durch Noradrenalin, Vasopressin bzw. Depolarisation bei stufenweiser Blockade der alpha-Receptoren

  • L. Griebel
  • U. Peiper
  • W. Wende
  • B. Glaser
  • E. Wasner

Activation of the vascular smooth muscle by noradrenaline, vasopressin or depolarization in the presence of graded blockade of the adrenergic alpha-receptors


  1. 1.

    Determinations of the maximum tension development of the helical strip of rat aorta showed that the maximal response to vasopressin amounted to 75% and that to potassium-induced depolarization to 93% of the contraction caused by noradrenaline (=100%).

  2. 2.

    When phentolamine (1.2-6.2×10−6 g/ml) was added to the bath 15 min before the determination of dose-response curves for noradrenaline, there was a concentration-dependent shift of the curve to the right; the slope of the curve, the ED50 and the concentration of noradrenaline required for maximum activation of the muscle increased. However, when phentolamine (1.2 to 6.2×10−6 g/ml) was administered after the development of a maximum response to noradrenaline, the muscle relaxed nearly completely. In the presence of phenoxybenzamine (3×10−6 g/ml) noradrenaline failed to cause contractions.

  3. 3.

    The dose-response curve for vasopressin was sigmoid. The presence of phentolamine did not affect the ED50 (at 1.6×10−3 IU/ml) or the peak of the curve (at 1.2×10−2 IU/ml). The administration of vasopressin to depolarized muscles always caused a contractile response. When the muscle was activated repeatedly by vasopressin, tachyphylaxis occurred.

  4. 4.

    Block of the adrenergic alpha-receptors influenced the contractile response to depolarization far less than that to noradrenaline.

  5. 5.

    In accordance with earlier studies, the present results lead to the conclusion that the contraction of the vascular smooth muscle in response to noradrenaline, vasopressin, or depolarization, respectively, involves different mechanisms.



Vascular Smooth Muscle Adrenergic Alpha-Receptors Vasopressin Potassium Depolarization Noradrenaline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, R. P.: A study of the adrenotropic receptors. Amer. J. Physiol.153, 586–600 (1948).Google Scholar
  2. Avakian, O. V., Gillespie, J. S.: Uptake of noradrenaline by adrenergic nerves, smooth muscle and connective tissue in isolated perfused arteries and its correlation with the vasoconstrictor response. Brit. J. Pharmacol.32, 168–184 (1968).Google Scholar
  3. Axelsson, J.: Potential change and contraction. Acta physiol. scand. Suppl.230, 34 (1969).Google Scholar
  4. Barr, L.: The responsiveness of arterial smooth muscle. In: Biophysics of physiological and pharmacological actions (A. M. Shanes), pp. 579–589. Washington, D.C.: AAAS 1961.Google Scholar
  5. Bevan, J. A.: The use of the rabbit aorta strip in the analysis of the mode of action of 1-epinephrine on vascular smooth muscle. J. Pharmacol. exp. Ther.129, 417–427 (1960).Google Scholar
  6. Bohr, D. F., Uchida, E.: Individualities of vascular smooth muscles in response to angiotensin. Circulat. Res.20–21, Suppl. 2, 135–143 (1967).Google Scholar
  7. Brecht, K., Estada, J., Götz, A.: Zur Beeinflussung der Gefä\motorik durch Ca-und K-Ionen. Pflügers Arch. ges. Physiol.279, 330–340 (1964).Google Scholar
  8. Davignon, J., Lorenz, R. R., Shepherd, J. T.: Response of the human umbilical artery to changes in transmural pressure. Amer. J. Physiol.209, 51–59 (1965).Google Scholar
  9. Folkow, B., Häggendal, J., Lisander, B.: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand.72, Suppl.307, 1–38 (1967).Google Scholar
  10. Furchgott, R. F.: The pharmacological differentiation of adrenergic receptors. Ann. N. Y. Acad. Sci.139, 553–570 (1967).Google Scholar
  11. Gulati, O. D., Parikh, H. M., Umar, M. S.: Receptors for noradrenaline and histamine in the rabbit's posterior vena cava. Brit. J. Pharmacol.32, 87–95 (1968).Google Scholar
  12. Hinke, J. A. M., Wilson, M. C., Burnham, S. C.: Calcium and the contractility of arterial smooth muscle. Amer. J. Physiol.206, 211–215 (1964).Google Scholar
  13. Hiraoka, M., Yamagishi, S., Sano, T.: Role of calcium ions in the contraction of vascular smooth muscle. Amer. J. Physiol.214, 1084–1089 (1968).Google Scholar
  14. Holman, M. E., Kasby, C. B., Suthers, M. B., Wilson, J. A. F.: Some properties of the smooth muscle of rabbit portal vein. J. Physiol. (Lond.)196, 111–132 (1968).Google Scholar
  15. Hudgins, P. M., Weiss, G. B.: Differential effects of calcium removal upon vascular smooth muscle contraction induced by norepinephrine, histamine and potassium. J. Pharmacol. exp. Ther.159, 91–97 (1968).Google Scholar
  16. Jhamandas, K. H., Nash, C. W.: Effects of inorganic anions on the contractility of vascular smooth muscle. Canad. J. Physiol.45, 675–682 (1967).Google Scholar
  17. Johansson, B., Jonsson, O., Axelrod, J., Wahlström, B. W.: Electrical and mechanical characteristics of vascular smooth muscle response to norepinephrine and isoproterenol. Circulat. Res.21, 619–633 (1967).Google Scholar
  18. Keatinge, W. R.: Mechanism of adrenergic stimulation of mammalian arteries and its failure at low temperatures. J. Physiol. (Lond.)174, 184–205 (1964).Google Scholar
  19. Khairallah, P. A., Page, I. H., Bumpus, F. M., Türker, R. K.: Angiotensin tachyphylaxis and its removal. Circulat. Res.19, 247–254 (1966).Google Scholar
  20. Kirchheim, H., Gross, R.: Das Verhalten der Nierendurchblutung und des Nierenumfanges bei Blutdrucksteigerungen durch doppelseitigen Carotisverschluß oder Schrittmacher-Tachycardie. Untersuchungen zur Autoregulation der Nierendurchblutung am wachen Hund. Pflügers Arch.320, 79–96 (1970).Google Scholar
  21. Kochemasova, N. G.: A study of the electrical and mechanical reactions of smooth muscles of vessels to the effect of noradrenaline. Fiziol. Z. SSSR53, 1476–1482 (1967).Google Scholar
  22. Kohli, J. D.: A comparative study of dopamine and noradrenaline on the rabbit aorta. Canad. J. Physiol.47, 171–174 (1969).Google Scholar
  23. Langer, S. Z., Trendelenburg, U.: The effect of a saturable uptake mechanism on the slopes of dose-response curves for sympathomimetic amines and on the shifts of dose-response curves produced by a competitive antagonist. J. Pharmacol. exp. Ther.167, 117–142 (1969).Google Scholar
  24. Ljung, B.: Local transmitter concentrations in vascular smooth muscle during vasoconstrictor nerve activity. Acta physiol. scand.77, 212–223 (1969).Google Scholar
  25. Louis, W. J., Jerums, G.: Tachyphylaxis to alpha- and beta-angiotensin in dogs perfused with Ringer's solution or blood. Circulat. Res.22, 75–82 (1968).Google Scholar
  26. McNeill, R. J., Stark, R. D., Greenway, C. V.: Intestinal vasoconstriction after hemorrhage: role of vasopressin and angiotensin. Amer. J. Physiol.219, 1342 to 1347 (1970).Google Scholar
  27. Nakajima, A., Horn, L.: Electrical activity of single vascular smooth muscle fibers. Amer. J. Physiol.213, 25–30 (1967).Google Scholar
  28. Peiper, U., Griebel, L., Wende, W.: Unterschiedliche Temperaturabhängigkeit der Gefäßmuskelkontraktion nach Aktivierung durch Kalium-Depolarisation bzw. Noradrenalin. Pflügers Arch.324, 67–78 (1971).Google Scholar
  29. —, Wende, W.: Wirkung der extracellulären Wasserstoff-Ionenkonzentration auf die adrenerge Aktivierung des Gefäßmuskels. Pflügers Arch.314, 14–26 (1970a).Google Scholar
  30. — —: Adrenerge Aktivierung und Kaliumkontraktur des Gefä\muskels. Pflügers Arch.316, R 22 (1970b).Google Scholar
  31. Peiper, U., Wende, W., Wullstein, H. K.: Der Einfluß von Temperatur, Vorspannung und Propranolol auf die Noradrenalinwirkung am isolierten Gefäß-streifen der Rattenaorta. Pflügers Arch.305, 167–176 (1969).Google Scholar
  32. Pürschel, S., Reichel, H., Vonderlage, M.: Vergleichende Untersuchungen zur stastischen und dynamischen Wanddehnbarkeit von vena cava und Aorta des Kaninchens. Pflügers Arch.306, 232–246 (1969).Google Scholar
  33. Roddie, I. C.: Electrical and mechanical activity of turtle arteries and veins. Bibl. anat. (Basel)8, 1–4 (1967).Google Scholar
  34. Shibata, S., Briggs, A. H.: The relationship between electrical and mechanical events in rabbit aortic strip. J. Pharmacol, exp. Ther.153, 466–473 (1966).Google Scholar
  35. —, Carrier, O.: Antagonizing action of chlorpromazine, dibenamine and phenoxybenzamine on potassium-induced contraction. Canad. J. Physiol.45, 587–596 (1967).Google Scholar
  36. Silva, M. R. e, Rosenberg, M.: The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J. Physiol. (Lond.)202, 535–557 (1969).Google Scholar
  37. Somlyo, A. V., Sandberg, R. I., Somlyo, A. P.: Pharmacologically heterogeneous smooth muscle cell distribution in blood vessels. J. Pharmacol. exp. Ther.149, 106–112 (1965).Google Scholar
  38. —, Somlyo, A. V.: Vascular smooth muscle. 1. Normal structure, pathology, biochemistry and biophysics. Pharmacol. Rev.20, 197–272 (1968).Google Scholar
  39. ——, Woo, C. Y.: Neurohypophysial peptide interaction with magnesium in avian vascular smooth muscle. J. Physiol. (Lond.)192, 657–668 (1967).Google Scholar
  40. Speden, R. N.: Adrenergic transmission in small arteries. Nature (Lond.)216, 289–290 (1967).Google Scholar
  41. —: The influence of the periarterial nerve fibers on an isolated and perfused small mesenteric artery. Aust. J. exp. Biol. med. Sci.47, 553–564 (1969).Google Scholar
  42. Su, C., Bevan, J. A., Ursillo, R. C.: Electrical quiescence of pulmonary artery smooth muscle during sympathomimetic stimulation. Circulat. Res.15, 20–27 (1964).Google Scholar
  43. Vanhoutte, P. M., Lorenz, R. R.: Effect of temperature on reactivity of saphenous, mesenteric, and femoral veins of the dog. Amer. J. Physiol.218, 1746–1750 (1970).Google Scholar
  44. Voth, D., Schipp, R., Agsten, M., Schürmann, K., Kohlhardt, M., Dudek, J.: Untersuchungen über den Einfluß des Kationenmilieus und verschiedener Pharmaka auf die Kontraktilität und Autorhythmik eines spontan aktiven glatten Gefäßmuskels in vitro. Arch. Kreisl.-Forsch.60, 364–387 (1969).Google Scholar
  45. Walter, P., Bassenge, E.: Effect of angiotensin on vascular smooth muscle. Pflügers Arch.307, 70–82 (1969).Google Scholar
  46. Waugh, W. H.: Adrenergic stimulation of depolarized arterial muscle. Circulat. Res.11, 264–276 (1962).Google Scholar
  47. Wende, W., Peiper, U.: Wechselwirkung von Kalium und Noradrenalin auf die Spannungsentwicklung des isolierten Gefä\muskels. Pflügers Arch.320, 133 bis 141 (1970).Google Scholar
  48. Wohl, A. J., Hausler, L. M., Roth, F. E.: Studies of the mechanism of antihypertensive action of diazoxide: in vitro vascular pharmacodynamics. J. Pharmacol. exp. Ther.158, 531–539 (1967).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • L. Griebel
    • 1
  • U. Peiper
    • 1
  • W. Wende
    • 1
  • B. Glaser
    • 1
  • E. Wasner
    • 1
  1. 1.Physiologisches Institut der Universität WürzburgDeutschland

Personalised recommendations