Advertisement

Metabolic Brain Disease

, Volume 5, Issue 1, pp 19–31 | Cite as

Hepatic encephalopathy influences high-affinity uptake of transmitter glutamate and aspartate into the hippocampal formation

  • Werner Schmidt
  • Gerald Wolf
  • Kurt Grüngreiff
  • Matthias Meier
  • Torsten Reum
Original Contributions

Abstract

The present work was carried out to study the influence of ammonia and factors from sera and cerebrospinal fluid (CSF) from patients with different degrees of chronic liver diseases on [3H]D-aspartate (Asp) and [3H]L-glutamate (Glu) high-affinity uptake into the rat hippocampal formation. For comparison, high-affinity uptake of Glu and Asp was determined in human hippocampal brain tissue obtained at autopsy from cirrhotic patients dying in hepatic coma and from control brains free from neurological, psychiatric, or hepatic diseases. Sera and CSF from patients with chronic liver failure and hepatic encephalopathy (HE) were seen to reduce dramatically Glu and Asp uptake into rat hippocampal dendritic layers. A close inverse relationship was found to exist between the level of ammonia in the sera and the inhibition of uptake, both phenomena correlating highly with the extent of liver failure. The present findings, obtained after dilution of sera from patients with HE while maintaining initial ammonium levels, elucidate, however, that ammonia alone cannot account for the reduction in Glu/Asp uptake capacity. The inhibition of Asp uptake into human hippocampal formation of patients dying in hepatic coma was even more pronounced when compared to that found in rat hippocampus incubated in sera and CSF from patients. Glu/Asp uptake into brain tissue is supposed to be an important factor in the pathogenesis of HE accompanying liver dysfunctions.

Key words

hepatic encephalopathy transmitter glutamate high-affinity uptake autopsied brain tissue hippocampal formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, H. F., and Ward, H. K. (1976). On glutaminase activity in mammalian synaptosomes.Brain Res. 110: 115–125.Google Scholar
  2. Butterworth, R. F., and Giguère, J. F. (1986). Cerebral amino acids in portal-systemic encephalopathy: Lack of evidence for altered γ-aminobutyric acid (GABA) function.Metab. Brain Dis. 1: 221–228.Google Scholar
  3. Butterworth, R. F., Lavoie, J., Giguère, J. F., Pomier Layrargues, G., and Bergeron, M. (1987). Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy.Neurochem. Pathol. 6: 131–144.Google Scholar
  4. Conn, H. O., Leevy, C. M., and Vlavechic, Z. R. (1977). A comparison of lactulose and neomycin in the treatment of portal systemic encephalopathy: A double blind controlled trial.Gastroenterology 72: 573–583.Google Scholar
  5. Cooper, A. J. L., and Lai, J. C. K. (1987). Cerebral ammonia metabolism in normal and hyperammonemic rats.Neurochem. Pathol. 6: 67–95.Google Scholar
  6. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. (1987). Anatomical localization of excitatory amino acid receptors and their pathways.Trends Neurosci. 10: 273–280.Google Scholar
  7. Davies, L. P., and Johnston, G. A. R. (1976). Uptake and release ofd-andl-aspartate by rat brain slices.J. Neurochem. 26: 1007–1014.Google Scholar
  8. Ferenci, P., Pappas, S. C., Munson, P. J., and Jones, E. A. (1984). Changes in glutamate receptors on synaptic membranes associated with hepatic encephalopathy or hyperammonemia in the rabbit.Hepatology 4: 25–29.Google Scholar
  9. Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain,J. Neurochem. 42: 1–11.Google Scholar
  10. Fonnum, F., Lund-Karlsen, R., Malthe-Sørensen, D., and Walaas, S. S. (1980). High affinity transport systems and their role in transmitter action. In Cotman, C. W., Poste, G., and Nicolson, G. L. (eds.),Cell Surface Reviews, Vol. 6. The Cell Surface and Neuronal Function, North-Holland, Amsterdam, New York, pp. 455–504.Google Scholar
  11. Giguère, J. F., and Butterworth, R. F. (1984). Amino acid changes in regions of the CNS in relation to function in experimental portalsystemic encephalopathy.Neurochem. Res. 9: 1309–1321.Google Scholar
  12. Greenamyre, J. T., Young, A. B., and Denney, J. B. (1983). Quantitative autoradiography of L-3H glutamate binding to the brain.Neurosci. Lett. 37: 155–160.Google Scholar
  13. Grüngreiff, K., Presser, H.-J., Franke, D., Löβner, B., Abicht, K., and Kleine, F.-D. (1989). Correlations between zinc, amino acids and ammonia in liver cirrhosis.Z. Gastroenterol. 27 (in press).Google Scholar
  14. Hamberger, A., Hequist, B., and Nyström, B. (1979). Ammonium ions inhibition of evoked release of endogenous glutamate from hippocampal slices.J. Neurochem. 33: 1295–1302.Google Scholar
  15. Hawkins, R. A., Mans, A. M., and Biekuyck, J. F. (1987). Changes in brain metabolism in hepatic encephalopathy.Neurochem. Pathol. 6: 35–66.Google Scholar
  16. Hindfelt, B., Plum, F., and Duffy, T. E. (1977). Effect of acute ammonia intoxication on cerebral metabolism in rats with portocaval shunt.J. Clin. Invest. 59: 386–396.Google Scholar
  17. Johnston, G. A. R. (1981). Glutamate uptake and its possible role in neurotransmitter inactivation. In Roberts, P. J., Storm-Mathisen, J., and Johnson, G. A. R. (eds.),Glutamate: Transmitter in the Central Nervous System, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, pp. 77–87.Google Scholar
  18. Kvamme, E., and Lenda, K. (1982). Regulation of glutaminase by exogenous glutamate, ammonia ions and 2-oxogglutarate in synaptosomal enriched preparation from rat brain.Neurochem. Res. 7: 667–677.Google Scholar
  19. Markefski, M., and Wolf, G. (1989). Influence of ammonia, octanoate, quinolate and hypoxic condition on NAD(P)H fluorescence of hippocampal slices (submitted for publication).Google Scholar
  20. Mena, E. E., and Cotman, C. W. (1985). Pathologic concentration of ammonium ions block L-glutamate uptake.Exp. Neural. 89: 259–263.Google Scholar
  21. Mena, E. E., Monaghan, D. T., Whittemore, S. R., and Cotman, C. W. (1985), Cations differentially affect subpopulations ofl-glutamate receptors in rat synaptic plasma membranes.Brain Res. 329: 319–322.Google Scholar
  22. Moroni, F., Lombardi, G., Carla, V., Cal, S., Etienne, P., and Naiv, N. P. V. (1986). Increase in content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure.J. Neurochem. 47: 1667–1671.Google Scholar
  23. Ottersen, O. P., and Storm-Mathisen, J. (1984). Neurons containing or accumulating transmitter amino acids. In Björklund, A., Hökfelt, T., and Kuhar, M. J. (eds.),Handbook of Chemical Neuroanatomy, Vol. 3, Elsevier North-Holland, Amsterdam, pp. 141–246.Google Scholar
  24. Raabe, W. (1987). Synaptic transmission in ammonia intoxication.Neurochem. Pathol. 6: 145–166.Google Scholar
  25. Rossi-Fanelli, F., Cascino, A., Strom, R., Cardelli-Cangiano, P., Ceci, F., Muscaritoli, M., and Cangiano, C. (1987). Amino acids and hepatic encephalopathy.Progr. Neurobiol. 28: 277–301.Google Scholar
  26. Sawada, S., Higashima, M., and Yamamoto, C. (1985). Inhibitors of high-affinity uptake augment depolarisation of hippocampal neurons induced by glutamate and related compounds.Exp. Brain Res. 60: 323–329.Google Scholar
  27. Schmidt, W., and Wolf, G. (1988). High-affinity uptake of L-[3H] glutamate and D-[3H] aspartate during postnatal development of the hippocampal formation: A quantitative autoradiographic study.Exp. Brain Res. 70: 50–54.Google Scholar
  28. Storm-Mathisen, J., and Ottersen, O. P. (1987). Anatomy of putative glutamatergic neurons. In Avoli, M., Reader, T. A., Dykes, R. W., and Gloor, P. (eds.),Neurotransmitters in Brain Function, Plenum Press, New York, pp. 1–78.Google Scholar
  29. Storm-Mathisen, J., and Ottersen, O. P. (1988). Localization of excitatory amino acids transmitters. In Lodge, D. (ed.),Excitatory Amino Acid in Health and Disease, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp. 107–141.Google Scholar
  30. Subbalakshmi, G. Y. C. V., and Murthy, Ch. R. K. (1985). Differential response of enzymes of glutamate metabolism in neuronal perikarya and synaptosomes in acute hyperammonemia in rat.Neurosci. Lett. 59: 121–126.Google Scholar
  31. Theoret, Y., and Bossu, J. L. (1985). Effects of ammonium salts on synaptic transmission to hippocampal CA1 and CA3 pyramidal cells in vivo.Neuroscience 14: 807–821.Google Scholar
  32. Theoret, Y., Davies, M. F., Esplin, B., and Lapek, R. (1985). Effects of ammonium chloride on synaptic transmission in the rat hippocampal slice.Neuroscience 14: 798–806.Google Scholar
  33. Wofsey, A. R., Kuhar, M. J., and Snyder, S. H. (1971). A unique synaptosomal fraction, which accumulates glutamic and aspartic acid in brain tissue.Proc. Natl. Acad. Sci. USA 68: 1102–1106.Google Scholar
  34. Zieve, L. (1981). The mechanism of hepatic coma.Hepatology 1: 360–365.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Werner Schmidt
    • 1
  • Gerald Wolf
    • 1
  • Kurt Grüngreiff
    • 2
  • Matthias Meier
    • 1
    • 2
  • Torsten Reum
    • 1
    • 2
  1. 1.Institute of BiologyMedical Academy of MagdeburgMagdeburgGerman Democratic Republic
  2. 2.Clinic of Internal MedicineMedical Academy of MagdeburgMagdeburgGerman Democratic Republic

Personalised recommendations