Skip to main content
Log in

Effect of propentofylline on the biochemical lesion of the rat brain in aluminium-induced neurotoxicity

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Acute and chronic administration of Al-gluconate (12.7% Al) at the concentration of 1 mg/kg produces edema in the rat brain, as reflected by the increase in water and Na+ content. The permeability for Evans blue is also increased, which indicates the opening of the blood-brain barrier. Higher concentrations of the Al-gluconate (10 mg/kg) change, in acute experiments, the pattern of energy metabolites in the rat brain toward a profile observed in a deep hypoxia. Chronic administration of a low concentration of Al-gluconate (1 mg/kg) increases the local utilization of glucose in 20 of 39 rat brain structures examined. This increase was particularly evident in the structures of the limbic system. Xanthine derivative propentofylline reverses the edema formation in acute and chronic experiments. Hypoxialike changes in energy metabolism are also reversed by propentofylline. In preliminary experiments propentofylline also suppressed the increased utilization of glucose observed after administration of Al-gluconate. These results suggest that (i) the Al-gluconate model in rats can be used to study Al-neurotoxicity at a very low level of Al, and (ii) the xanthine derivative propentofylline can eventually be used to abolish the Al-neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfrey, A. C., LeGendre, G. R., and Kaehny, W. D. (1976). The dialysis encepalopathy syndrome. Possible aluminum intoxication.N. Engl. J. Med. 294: 184–188.

    Google Scholar 

  • Perl, D., Gajdusek, D., and Garruto, R. (1982). Intraneuronal aluminium accumulation in amyotrophic lateral sclerosis and Guam parkinsonism-dementia of Guam.Science 217: 1053–1055.

    Google Scholar 

  • Crapper McLachlan, D. R. (1986). Aluminum and Alzheimer's disease.Neurobiol. Aging 7: 525–532.

    Google Scholar 

  • Wisniewski, H. M., Moretz, R. C., and Iqbal, K. (1986). No evidence for aluminum in ethiology and pathogenesis of Alzheimer's disease.Neurobiol. Aging 7: 532–535.

    Google Scholar 

  • Perl, D. P., and Brody, A. R. (1980). Alzheimer disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangles bearing neurons.Science 208: 297–299.

    Google Scholar 

  • Candy, J. M., Klinowski, R. H., Perry. H.,et al. (1986). Aluminosilicates and senile plaque formation in Alzeheimer's disease.Lancet 1: 354–356.

    Google Scholar 

  • Rössner, W., and Tempel, K. (1966). Quantitative Bestimmung der Permeabilität der sogenannten Blut-Hirnschranke für Evans-Blau (T1824.Med. Pharmacol. Exp. 14: 169–182.

    Google Scholar 

  • Sztriha, L., Joó, F., and Szerdahelyi, P. (1986). Time-course of changes in water, sodium, potassium and calcium contents of various brain regions in rats after systemic kainic acid administration.Acta Neuropathol. 70: 169–176.

    Google Scholar 

  • Temesvári, P., Joó, F., Koltai, M., Eck, E., Ádám, G., Siklós, L., and Boda, D. (1984). Cerebroprotective effect of dexamethasone by increasing the tolerance to hypoxia and preventing brain oedema in newborn piglets with experimental pneumothorax.Neurosci. Lett. 49: 87–92.

    Google Scholar 

  • McMillan, V., and Siesjö, B. K. (1972). Brain energy metabolism in hypoxemia.Scand. J. Clin. Lab. Invest. 30: 127–136.

    Google Scholar 

  • Atkinson, D. E. (1968). The energy charge of the adenylate pool as regulatory parameter. Interaction with feedback modifiers.Biochemistry 7: 4030–4034.

    Google Scholar 

  • Sokoloff, L., Revich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shirohara, M. (1977). The deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anaesthetised albino rat.J. Neurochem. 28: 897–916.

    Google Scholar 

  • Miller, R. G. (1966).Simultaneous Statistical Interference, MacGraw-Hill, New York.

    Google Scholar 

  • Banks, W. A., and Kastin, A. J. (1983). Aluminum increases permeability of the blood-brain barrier to labelled DSIP and β-endorphin: Possible implications for senile and dialysis dementia.Lancet 2: 1227–1229.

    Google Scholar 

  • Kim, Y. S., Lee, H. M., and Wisniewski, H. M. (1986). Aluminum induced reversible change in permeability of the blood-brain barrier to (14C) sucrose.Brain Res. 377: 286–291.

    Google Scholar 

  • Klatzo, I. (1967). Neuropathological aspects of brain edema.J. Neuropathol. Exp. Neurol. 26: 1–14.

    Google Scholar 

  • Leblondel, G., and Allain, P. (1980). Blood and brain aluminum in mice afer intra-peritoneal injection of different aluminum compounds.Res. Comm. Chem. Path. Pharmacol. 27: 579–586.

    Google Scholar 

  • Stefanovich, V. (1981). Anoxic rat model. In Stefanovich, V. (ed.),Proceedings of the Symposium Animal Models and Hypoxia, Pergamon Press, Oxford, pp. 111–123.

    Google Scholar 

  • Grome, J. J., and Stefanovich, V. (1986). Differential effects of xanthine derivatives on local cerebral blood flow and glucose utilization in the conscious rat. In Stefanovich, V., Rudolphi, K., and Schubert, P. (eds.),Adenosine: Receptors and Modulation of Cell Functions, IRL Press, Oxford, pp. 453–457.

    Google Scholar 

  • Nagy, Z., Peters, H., and Huttner, I. (1981). Endothelial surface charge: Blood-brain barrier opening to horseradish peroxidase induced by the polycation protamine sulfate.Acta Neuropathol. Supl. VII: 7–9.

    Google Scholar 

  • Mrsulja, B. B., Mićić, D. V., and Stefanovich, V. (1985). Propentofylline and postischemic brain edema: Relationship to Na+, K+-ATPase activity.Drug Dev. Res. 6: 339–344.

    Google Scholar 

  • Sokoloff, L. (1979). Mapping of local cerebral functional activity by measurement of local cerebral glucose utilization with (14C)-deoxyglucose.Brain 102: 653–668.

    Google Scholar 

  • Foncin, J. F., and El Hachimi, K. H. (1986). Neurofibrillary degeneration in Alzheimer's disease: A discussion with a contribution to aluminum pathology in man. In Bès, A.,et al. (eds.),Senile Dementias: Early Detection, John Libbey Eurotext, pp. 191–201.

  • Fredholm, B. B., and Lindstrom, K. (1986). The xanthine derivative 1-(5′-oxohexyl)-3-methyl-7-propyl-xanthine (HWA 285) enhances the action of adenosine.Acta Pharmacol. Toxicol. 58: 187–192.

    Google Scholar 

  • Vukadinović, V., Stefanovich, V., and Rakić, L. (1986). Effect of propentofylline on a GABA system of a rat brain.Drug Dev. Res. 7: 87–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanovich, V., Joó, F. Effect of propentofylline on the biochemical lesion of the rat brain in aluminium-induced neurotoxicity. Metab Brain Dis 5, 7–17 (1990). https://doi.org/10.1007/BF00996974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996974

Key words

Navigation