Metabolic Brain Disease

, Volume 6, Issue 4, pp 225–231 | Cite as

Increased cerebrospinal fluid lactate reflects deterioration of neurological status in experimental portal-systemic encephalopathy

  • Guy Therrien
  • Jean-François Giguère
  • Roger F. Butterworth
Original Contributions


Increased brain and CSF lactate have been described in human and experimental portal-systemic encephalopathy (PSE). Using a recently described cisterna magna catheter technique, CSF lactate was measured in relation to deterioration of neurological status in portacaval shunted rats administered ammonium acetate to precipitate severe PSE. Loss of righting reflex (precoma stage of PSE) was accompanied by 2–3 fold increased CSF lactate and onset of coma by 4-fold increases of lactate (p< 0.001 compared to either sodium acetate treated portacaval shunted rats or sham-operated controls administered ammonium acetate). The most likely explanation for increased CSF lactate is ammonia-induced inhibition of malate-aspartate shuttle and/or inhibition of tricarboxylic acid cycle flux in brain. Similar mechanisms could be involved in the pathogenesis of PSE in patients with chronic liver disease.

Key words

Portal-systemic encephalopathy hepatic encephalopathy lactate brain energy metabolism CSF cannula technique malate-aspartate shuttle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, S.C., Workman, R.D. and Lambertsen, C.J. (1962). Hyperthermia, lactic acid infusion, and the composition of arterial blood and cerebrospinal fluid.Am. J. Physiol. 202:(6), 1049–1054.Google Scholar
  2. Bergeron, M., Pomier Layrargues G., and Butterworth, R.F. (1989). Aromatic and branched-chain amino acids in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy.Metab Brain Dis 4: 169–176.Google Scholar
  3. Butterworth, R.F. (1992). Pathogenesis and treatment of portal-systemic encephalopathy: an update.Digest Dis and Sci 37: 321–327.Google Scholar
  4. Butterworth, R.F., Giguère, J.F., Michaud, J., Lavoie, J. and Pomier Layrargues, G. (1987). Ammonia: key factor in the pathogenesis of hepatic encephalopathy.Neurochem Pathol 6: 1–12.Google Scholar
  5. Fan, P., Lavoie, J., Le, O., Szerb, J.C., Butterworth, R.F. (1990). Neurochemical and electrophysiological studies on the inhibitory effect of ammonium ions on synaptic transmission in slices of rat hippocampus: Evidence for a postsynaptic action.Neuroscience 37: 327–334.Google Scholar
  6. Fazekas, J.F., Ticktim, H.E., Ehrmantraut, W.R. and Alman, R.W. (1956). Cerebral metabolism in hepatic insufficiency.Amer. J. Med. 21: 843.Google Scholar
  7. Giguère, J.F. and Butterworth, R.F. (1984). Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy.Neurochem. Res. 9: 1309–1319.Google Scholar
  8. Hindfelt, B. and Siesjö, B.K. (1971). Cerebral effects of acute ammonia intoxication.II. The effect upon energy metabolism.Scand. J. Clin. Lab. Invest. 28: 365–374.Google Scholar
  9. Hindfelt, B., Plum, F. and Duffy, T.E. (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts.J Clin. Invest. 59: 386–396.Google Scholar
  10. Kauppinen, R.A., Sihra, T.S. and Nichols, D.G. (1987). Aminoxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates.Biochem. Biophys. Acta,930: 173–178.Google Scholar
  11. Lai, J.C.K. and Cooper, A.J.L. (1986). α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution and effects of inhibitors.J. Neurochem. 47: 1376–1386.Google Scholar
  12. Lavoie, J., Giguère, J.F., Pomier Layrargues, G.P., and Butterworth, R.F. (1987). Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy.J. Neurochem. 49: 692–697.Google Scholar
  13. Lee, S.H., and Fisher, B. (1961). Portocaval shunt in the rat.Surgery 50: 668–672.Google Scholar
  14. Lockwood, A.H., Yap, E.W.H., Wong, W.H. (1991). Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy.J Cerebr Blood Flow and Metab 11: 337–341.Google Scholar
  15. Matsuoka, M., Igisu, H., Kohriyama, K. and Inoue, N. (1990). Effects of ammonia on brain energy metabolites-dose-dependent alterations.J. Neurochem. 55: 354–355.Google Scholar
  16. McCandless, D.W. and Schenker, S. (1981). Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system.Exp. Brain Res. 44: 325–330.Google Scholar
  17. McKhann, G.M. and Tower, D.B. (1961). Ammonia toxicity and cerebral oxidative metabolism.Amer. J. Med. 200: 420.Google Scholar
  18. Posner, J.B. and Plum, F. (1960). The toxic effects of carbon dioxide and by acetazolamide in hepatic encephalopathy.J. Clin. Invest. 39: 1246.Google Scholar
  19. Posner, J.B. and Plum, F. (1967). Independence of blood and cerebrospinal fluid lactate.Arch. Neurol. 16: 492–496.Google Scholar
  20. Raabe, W.A. (1989). Neurophysiology of ammonia intoxication. In Hepatic Encephalopathy: Pathophysiology and Treatment. RF Butterworth, G. Pomier Layrargues (eds). Clifton, New Jersey, Humana Press, pp 49–77.Google Scholar
  21. Staub, F., Baethmann, A., Peters, J., Weigt, H. and Kempski, O. (1990). Effects of lactacidosis on glial cell volume and viability.J. Cerebr. Blood Flow and Metab. 10: 866–876.Google Scholar
  22. Takahashi, H., Koehler, R.C., Brusilow, S.W. and Traystman, R.J. (1991). Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats.Am. J. Physiol. 261: H825-H829.Google Scholar
  23. Therrien, G., Butterworth, R.F. (1991). Cerebrospinal fluid amino acids in relation to neurological status in experimental portal-systemic encephalopathy.Metab Brain Dis 6:(2) 65–74.Google Scholar
  24. Yao H., Sadoshima, S., Fujii, K., Kusada, K., Ishitsuka, T., Tamaki, K. and Fujishima, M. (1987). Cerebrospinal fluid lactate in patients with hepatic encephalopathy.Eur. Neurol. 27: 182–187.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Guy Therrien
    • 1
  • Jean-François Giguère
    • 1
  • Roger F. Butterworth
    • 1
  1. 1.Laboratory of Neurochemistry, André-Viallet Clinical Research CenterHôpital Saint-Luc, (University of Montreal)MontrealCanada

Personalised recommendations