Advertisement

A comparative study of 2-3 trees and AVL trees

  • Ahmed S. Zaki
Article

Abstract

This paper presents an analysis, a survey, and compares the pertinent characteristics of AVL and 2-3 trees. In an attempt to optimize the space complexity of 2-3 trees, it introduces a new space saving and efficient top-down insertion and construction algorithm. The analysis shows that neither data structure totally dominates the other. The decision as to which is cost-wise efficient is a function of the application.

Key words

AVL trees 2–3 trees insertion algorithm expected cost comparison query costs storage costs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, Mass., 1975).Google Scholar
  2. 2.
    J. L. Baer and B. Schwab, “A Comparison of Tree-Balancing Algorithms,”Comm. ACM,20:322–330 (1977).Google Scholar
  3. 3.
    R. Bayer and E. McCreight, “Organization and Maintenance of Large Ordered Indexes,”Acta Informatica,1:173–189 (1972).Google Scholar
  4. 4.
    D. Comer, “The Ubiquitous B-Tree,”Computing Surveys,11:121–137 (1979).Google Scholar
  5. 5.
    L. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced Trees,”Proceedings of the 19th IEEE FOCS Conference, pp. 8–21 (1978).Google Scholar
  6. 6.
    E. Horowitz and L. Sahni,Fundamentals of Data Structures (Computer Science Press, Rockville, Maryland, 1982).Google Scholar
  7. 7.
    P. L. Karlton, et al., “Performance of Height-Balance Trees,”Comm. ACM,19:23–28 (1976).Google Scholar
  8. 8.
    D. E. Knuth,The Art of Computer Programming Vol. 1 (Addison-Wesley, Reading, Mass., 1967).Google Scholar
  9. 9.
    D. E. Knuth,The Art of Computer Programming Vol. 3 (Addison-Wesley, Reading, Mass., 1973).Google Scholar
  10. 10.
    W. A. Martin and D. N. Ness, “Optimizing Binary Trees Grown With a Sorting Algorithm,”Comm. ACM,15:88–93 (1972).Google Scholar
  11. 11.
    R. E. Miller, N. Pippenger, A. L. Rosenberg, and L. Snyder, “Optimal 2–3 Trees,”SIAM J. Comp.,8:42–49 (1979).Google Scholar
  12. 12.
    J. Nieverselt and E. M. Reingold, “Binary Search Trees of Bounded Balance,”SIAM J. Comp.,2:33–43 (1973).Google Scholar
  13. 13.
    J. Nievergelt, “Binary Search Trees and File Organization,”Computing Survey,6:195–207 (1973).Google Scholar
  14. 14.
    A. Rosenberg and L. Snyder, “Minimal Comparison 2–3 Trees,”SIAM J. Comp.,7:465–480 (1978).Google Scholar
  15. 15.
    J. R. Van Doren, “An Asymptotic Analysis of Minimum OrderB-Trees,” Department of Computing and Information Sciences, Oklahoma State University, February, 1976.Google Scholar
  16. 16.
    A. C. Yao, “On Random 2–3 Trees,”Acta Informatica,9:159–170 (1978).Google Scholar
  17. 17.
    A. S. Zaki and J. L. Baer, “Query Costs inHB(1) Trees Versus 2–3 Trees,”Internat. J. Comp. Inform Sci.,6:383–395 (1981).Google Scholar
  18. 18.
    A. S. Zaki,Insertion and Search in 2–3 Trees Versus HB(1)Trees, Ph.D. Dissertation, University of Washington, Seattle, WA., 1977.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Ahmed S. Zaki
    • 1
  1. 1.College of William and MaryWilliamsburg

Personalised recommendations