Molecular Biology Reports

, Volume 22, Issue 1, pp 47–52 | Cite as

Interaction of Co, Mn, Mg and Al with d(GCGTACGC): a spectroscopic study

  • M. T. Rajan
  • D. Champion
  • C. S. Kumar
  • D. Vishnuvardhan
  • K. S. Jagannatha Rao
  • M. A. Viswamitra
Research Articles

Abstract

Spectroscopic study on the interactions of trace elements Co, Mn, Mg and Al with d(GCGTACGC) indicated the following: Al and Mg did not alter Tm values. Mn enhanced Tm at lower concentration and decreased it at higher concentrations. Interestingly Co at higher concentration elevated the Tm. These studies also showed lower concentrations of Mn displaced EtBr, whereas Al could displace it at higher ionic strength. Mg and Co displaced EtBr fluorescence at moderate concentrations. The binding constant values and CD spectra clearly indicated strong binding of these elements to DNA.

Key words

DNA interaction spectroscopy and trace elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marzilli LG, Kistenmacher TJ and Eichhorn GL (1980) In: TG Spiro (Ed) Nucleic acid — metal ion interactions, pp. 179–250, John Wiley and Sons Publishers, NY USAGoogle Scholar
  2. 2.
    Putrament A, Baranowska H, Ejchart A and Prazmo W (1975) Mol. Gen. Genet. 140: 339–347Google Scholar
  3. 3.
    Beckman RA, Mildvam AS and Loeb LA (1985) Biochemistry 24: 5810–5817Google Scholar
  4. 4.
    Richardson CL, Verma J, Schulman GE, Shipp K and Grant AD (1981) Environ. Mutagen. 3: 545–553Google Scholar
  5. 5.
    Izatt RM, Christensen JJ and Rytting JH (1971) Chem. Rev. 71: 439–481Google Scholar
  6. 6.
    Rossetto FE and Wieboer E (1994) J. Inorg. Biochem. 54: 167–186Google Scholar
  7. 7.
    Crapper DR, McLachlan DRC, Lukiw WJ and Kruck TPA (1990) Environ. Geochem. Health 12: 103–114Google Scholar
  8. 8.
    Crapper DR, Quittkat S, Krishnan SS, Dalton AJ and DeBoni U (1980) Acta. Neuropathol. 50: 19–25Google Scholar
  9. 9.
    Jagannatha Rao KS, Rao BS, Vishnuvardhan D and Prasad KVS (1993) Biochem. Biophys. Acta 1172: 17–20Google Scholar
  10. 10.
    Karlik SJ, Eichhorn GL and McLachlan DRC (1980) Neurotoxicology 1: 83–88Google Scholar
  11. 11.
    Chen YZ and Prohofsky EW (1993) Biopolymers. 33: 797–812Google Scholar
  12. 12.
    Eichhorn GL and Shin YA (1968) J. Amer. Chem. Soc. 90: 7323Google Scholar
  13. 13.
    Froystein NA and Sletten E (1991) Acta. Chem. Scand. 45: 219–225Google Scholar
  14. 14.
    Froystein NA, Davis JT, Reid BR and Sletten E (1993) Acta. Chem. Scand. 47: 649–657Google Scholar
  15. 15.
    Xu D, Evans KO and Nordlund TM (1994) Biochemistry 33: 9592–9599Google Scholar
  16. 16.
    EMBL Nucleotide sequence data base, Vol 1. Release 40, Sep (1994)Google Scholar
  17. 17.
    Formoso C (1972) Biochem. Biophys. Res. Commun. 50: 999–1004Google Scholar
  18. 18.
    Morimura S and Matsumoto H (1978) Plant and Cell Physiol. 19: 429–436Google Scholar
  19. 19.
    Glassman TA, Cooper C, Harrison LW and Swiff TJ (1971) Biochemistry 10: 848–853Google Scholar
  20. 20.
    Sternlight H, Shulman RG and Anderson EW (1965) J. Chem. Phys. 43: 3133–3138Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. T. Rajan
    • 1
  • D. Champion
    • 2
    • 3
  • C. S. Kumar
    • 2
    • 3
  • D. Vishnuvardhan
    • 1
  • K. S. Jagannatha Rao
    • 1
  • M. A. Viswamitra
    • 2
    • 3
  1. 1.Department of Biochemistry and NutritionCentral Food Technological Research InstituteMysoreIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangalore
  3. 3.The Jawaharlal Nehru Center for Advanced Scientific ResearchJakkur, BangaloreIndia

Personalised recommendations